A normal mode solution to radio wave propagation in a terrestrial environment

Robert Wallace Johnson
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd
Part of the Electrical and Electronics Commons

Recommended Citation

Johnson, Robert Wallace, "A normal mode solution to radio wave propagation in a terrestrial environment " (1964). Retrospective
Theses and Dissertations. 2743.
https://lib.dr.iastate.edu/rtd/2743

```
This dissertation has been 65-3800 microfilmed exactly as received
JOHNSON, Robert Wallace, 1938A NORMAL MODE SOLUTION TO RADIO WAVE PROPAGATION IN A TERRESTRIAL ENVIRONMENT.
Iowa State University of Science and Technology Ph.D., 1964
Engineering, electrical
University Microfilms, Inc., Ann Arbor, Michigan
```

A Dissertation Submitted to the Graduate Faculty in Dartial Fulfillment of The ?equirements for the Derree of DOCTOR OF PIIILOSOPFiY
Hajor Sub.ject: Llectricel Engineering

Approved:

Signature was redacted for privacy.
In Charge of inajor Work

Signature was redacted for privacy.

```
Head of Major Department
```

Signature was redacted for privacy.

LABLE OF COMFPit'S

Pare
I. IATRODUCTIOL: 1
II. FORMULATIOA OF ThE PROBLEM Aisd ThL GGidralizad SOLUTION 5
III. SPECIFICATIOR: OF TiE PROFILLi 15
IV. THIE HEICHT GAIK FUNCTION 19
V. The bighivaluic for dife perfichly Coinducting Earti 27
VI. TILE COMPLETED SERIES FOR E ${ }_{\phi}$ 32
VII. CONCLUSIONS 39
VIII. BIBIICGFAPHY 40
IX. ACKOMLDGBMEMS 43
X. APPEidIX A 4.4
XI. APPRIDIX \bar{i} 47
XII. APPERDIX C 50
XIII. APPEIDIX D 58

I. INTRODUCTION

The study of the propagation of electromagnetic waves over the surface of the earth has long commanded a great deal of interest because of the mathematical tehniques involved and because of the obvicus practical significance of the problem. The history of this stuad can be traced to the modal representation presented by Lord Rayleigh (29) for sound waves emanating from a point source beside a large spherical boundary. In this representation, each mode took the form of a Bessel function of large order.
G. N. Watson (36) adapted the Rayleigh solution for electromagnetic propagation, and transformed the resulting series to an alternate form which converged rapidly enough to permit numerical evaluation. van der Pol and Bremmer (33) extended the Watson residue series to accomodate an arbitrary conductivity of the earth and an arbitrary dielectric constant. The model here involved a homogeneous atmosphere.

Schelleng, Burrows, and Ferrell (31) then pronosed a model in which tropospheric refraction would be taken into account by using an effective radius of the earth equal to about $4 / 3$ the actual value, thus extending the effective radio horizon. The validity of this general approach and the "classical $\frac{4}{3}$ earth radius" theory was assumed for some time.

A more critical study of the entire problem was stimulated by the publication of reliable experimental field strength measurements, such as those by Megaw (22), and Gerks (15), which indicated that fields beyond the radio horizon were commonly much stronger than the classical values. Three separate hypotheses were advanced to explain this discrepancy. The "turbulent scatterer" theory was advanced by Booker and Gordon (2), who
argued that local, time-varying anomalies in the refractive index effectively scatter energy beyond the horizon. Bullington (8) formulated the scattering of radiation due to the roughness of the surface of the earth, and obtained field strengths greater than the classical values.
Λ third group of investigators made a more critical study of the original mode theory in an attempt to bring together experimental and theoretical results. A brief history of this effort is desirable, since the classical mode theory forms the basis for this report.

Pekeris and Ament (27) completed the normal mode solution in cylindrical coordinates for several profiles of refractive index. Kerr (19) has collected several analyses, also concerning the flat earth, which were stimulated primarily by military work with radar. Bremmer (5) presents an exhaustive review of the classical results in spherical coordinates, including a physical interpretation of ray tracing and the Wentzel-Brillouin-Kramers method (10).

Wait (34) carefully analyzed the hypothesis of the homogeneous earth and concluded that such a model was justified. Chose and Albright (16) studied the normal modes for a choice of smooth profile which yielded a height gain equation that could be solved exactly. Experimental data quoted by Ghose and Albright has been compared with the results of the present study, with good agreement.

Carroll and Ring (9) showed, in an exhaustive treatment, that for several particular profiles, higher order modes could make a significant contribution to the field strength. Bremmer (3) has studied the mode expansion for smooth profiles and obtained field strengths smaller than those of Carroll and Ring.

Budden $(6,7)$ has reviewed the standard mode theory with particular emphasis on ionospheric propagation. Included is a treatment of Stoke's equation and the Airy integral solution. Post (28) has used earthflattened coordinates and a Green's function techniaue to allow the normal mode solution to accomodate an arbitrary profile. Some numerical data from Post has been included in this report to allow comparison of results. Gerks (14) has reviewed the entire mode solution as it applies to a spherical earth and a stratified atmosphere. Wait (35) has discussed the most recent work with the normal mode theory and low frequency applications.

The attempt to find solutions for a general class of height gain differential equations was begun by Furry (13), who applied the well-known W.K.B. solution to a bilinear profile. Pekeris (26) derived an asymptotic solution by means of a power series expansion. Langer (20), motivated by Pekeris'work, showed that the results of one of his earlier papers (21) could be applied to the problem of microwave propagation, but did not complete any quantitive check on the solution.

Friedman (12) has made extensive use of the Langer solution in formulating the mode solution for a general stratified atmosphere. He obtains, for any smooth, monotonically decreasing profile, an expression for the eigenvalues which leaves them essentially unchanged from the homoceneous atmosphere values. Horthover (23) has obtained the same qualitative result by a different method. Bremmer (4) has studied the dependence of the Langer solution on the complex root h_{1}.

This analysis draws freely on the classical mode solution as written by Friedman. A particular smooth profile, approximating an exponential profile, is specified by a three term power series, or quadratic. The
proper integration is performed to generate the Langer solution for this profile, and the transcendental equations defining the eigenvalues are obtained. Numerical examples are presented to compare the results with those of Friedman and Post. The Friedman expression of the free space eigenvalues is obtained as a special case of the present solution.

II. FORMULATION OF THE PROBLEM AIID THE GENERALIZED SOLUTION

This analysis deals with the electromagnetic fields produced by an elemental monochromatic magnetic dipole vertically oriented above a homogeneous conducting sphere. Of particular interest is the case in which the radius of the sphere is very large compared to the free space wavelength, and in which the dielectric medium surrounding the sphere is described by a refractive index that is given a specified functional dependence on the radial coordinate.

For the purposes of this analysis, a point magnetic dipole of strencth m is defined as a planar loop of radius R, carrying current I, in the limiting case as R becomes arbitrarily small such that $m=\underset{\substack{\mathrm{R} \rightarrow 0}}{\lim } \mathrm{RI}$. This source is somewhat analogous to a horizontally oriented antenna in that the polarization of the resulting electric field is the same.

The problem is presented in ordinary spherical coordinates r, θ, and ϕ, as depicted in Figure 1. The dipole is radially oriented and located at $r=b$ on the axis defined by $\theta=0$. The radius of the sphere will be given by a. This geometric configuration is obviously an appropriate idealized model with which to study the propagation of electromagnetic energy around the earth at high frequencies.

The choice of the magnetic dipole source as opposed to the electric dipole is made because the resulting boundary conditions are considerably simpler. This choice is further justified by the fact that experimental evidence indicates the field strengths in the diffraction region, or beyond the radio horizon, to be relatively independent of the polarization of the source (9). The frequency range for which the model is

Figure 1. The spherical coordinates of the problem
accurate will have a lower bound due to the lack of consideration of the ionosphere. Field strengths calculated on the basis of a perfectly conducting earth will be valid for those frequencies at which the earth appears to be a very good conductor.

It will be instructive to review the classical construction of solutions to Maxwell's equations in terms of a magnetic vector potential \vec{A} and an electric potential \vec{F}. The notation here will be that due to Harrington (17). The electric field intensity $\overrightarrow{\mathrm{E}}$ and the magnetic field intensity \vec{H} must satisfy Maxwell's equations for a source-free resion, except at the source point.

$$
\begin{array}{ll}
\nabla \times \vec{E}=j \omega \mu \vec{H} & \nabla \cdot \overrightarrow{\mathrm{I}}=0 \\
\nabla \times \vec{H}=-j \omega \varepsilon \vec{E} & \nabla \cdot \vec{E}=0 \tag{1}
\end{array}
$$

The time dependence of $e^{-j \omega t}$ has been removed, so that real time expressions can be obtained for these field intensities by taking the real part of the products $\overrightarrow{E e^{-j \omega t}}$ and $\overrightarrow{\mathrm{He}}-\mathrm{j} \omega \mathrm{t}$.

It is customary to relate notentials to intensities by requiring that

$$
\begin{equation*}
\vec{E}=-\nabla \times \vec{F} \tag{2}
\end{equation*}
$$

when only magnetic sources are present, and

$$
\begin{equation*}
\vec{H}=\nabla x \vec{A} \tag{3}
\end{equation*}
$$

when only electric sources are present. In the case of both sources, the fields due to each source are superimposed to yield the relations

$$
\begin{align*}
& \vec{E}=-\nabla \times \vec{F}+\frac{i}{\omega \varepsilon} \nabla \times \nabla \times \vec{A} \\
& \vec{H}=\nabla \times \vec{A}+\frac{i}{\omega \mu} \nabla \times \nabla \times \vec{F} \tag{4}
\end{align*}
$$

The potentials \vec{A} and \vec{F} are still arbitrary to the extent that a particular
"gauge" transformation can be made. For one such choice, the potentials satisfy the wave equations

$$
\begin{align*}
& \nabla^{2} \stackrel{\rightharpoonup}{A}+k^{2} \vec{A}=0 \\
& \nabla^{2} \vec{F}+k^{2} \vec{F}=0 \tag{5}
\end{align*}
$$

where k is the wave number defined by

$$
\begin{equation*}
k^{2}=\omega^{2} \mu \varepsilon \tag{6}
\end{equation*}
$$

It is possible to represent, by means of the potentials \vec{A} and \vec{F}, an arbitrary electromagnetic field as the superposition of a marnetic field transverse to the radius vector, (TM), and an electric field transverse to \vec{r}, (TE). For this purpose it will be required that

$$
\begin{aligned}
& \vec{A}=A_{r} \vec{e}_{r} \\
& \vec{F}=F_{r} \vec{e}_{r}
\end{aligned}
$$

where \vec{e}_{r} is a unit vector in the racial direction. Equations 5 require that the rectangular components of \vec{A} and \vec{F} satisfy the scalar Helmholtz wave equation. By substitution into these same eduations, it can be determined that the functions $\frac{A_{r}}{r}$ and $\frac{F_{r}}{r}$ also satisfy the Ifelmholtz equation,

$$
\begin{align*}
& {\left[\nabla^{2}+k^{2}\right] \frac{A}{r}=0} \tag{8}\\
& {\left[\nabla^{2}+k^{2}\right] \frac{F_{r}}{r}=0} \tag{9}
\end{align*}
$$

At this point it is appropriate to recognize that the potential vector \vec{F} is essentially identical to the radial "Hertz" vector used extensively by Friedman (12), and Bremmer (5), and it is also equivalent to the "magnetic potential" $\overrightarrow{\mathrm{Z}}_{\mathrm{m}}$ discussed by Panofsky and Phillips (25). It is known that an arbitrary field can be constructed from the TE and $\mathbb{T M}$ modes which are generated from the radial vectors \vec{F} and \vec{A}, since these
modes form a complete set (17). It is well established from the work of Bremmer (5) and Friedman (12), however, that for the particular problem outlined here, involving a radial dipole and radially stratified index of refraction, the fields can be generated from a single radial potential F. This assertion need not be proven before-hand, since the uniqueness theorem, as given by Harrington (17), provides assurance that a solution obtained from a single potential, radially oriented, will be the only one possible.

To proceed with the classical solution, one writes the operator $\left[\nabla^{2}+k^{2}\right]$ in spherical coordinates and uses the method of séparation of variables to solve Equation 9 . Since by symmetry there is no ϕ denendence, let

$$
\begin{equation*}
\frac{F_{r}}{r}=\bar{\theta}(\theta) R(r) \tag{10}
\end{equation*}
$$

The separated equations which result are

$$
\begin{align*}
& \frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d R}{d r}\right)+\left[k^{2}-\frac{v(v+1)}{r^{2}}\right] R=0 \tag{11}\\
& \frac{1}{\sin \theta} \frac{\bar{a}}{d \theta}\left(\sin \theta \frac{d \bar{\theta}}{d \theta}\right)+[v(v+1)] \bar{\theta}=0 \tag{12}
\end{align*}
$$

The separation constant is given by $v(v+1)$. The requirement that $\overline{0}$ be defined for all θ on the closed interval $[0, \pi]$ requires that v be a positive integer. The solution for $\bar{\theta}$ is then

$$
\begin{equation*}
\bar{\theta}_{v}(\theta)=P_{v}(\cos \theta) \tag{13}
\end{equation*}
$$

where $P(x)$ is the well known Legendre function. In the case of a homogeneous medium, the solutions for R are the well known spherical Bessel functions

$$
\begin{equation*}
R_{v}=\sqrt{\frac{\pi}{2 k r}} B_{v+1 / 2}(k r) \tag{14}
\end{equation*}
$$

where $B(k r)$ is an ordinary Bessel function.
The solution for F_{r} then becomes

$$
\begin{equation*}
\mathrm{F}_{\mathrm{r}}=\sum_{v} \mathrm{C}_{v} r \mathrm{R}_{v} \mathrm{P}_{v}(\cos \theta) \tag{15}
\end{equation*}
$$

where C_{v} is a constant.
It is helpful to define the function $\widehat{B_{v}}$ by

$$
\begin{equation*}
\widehat{B}_{v}=r R_{v} \tag{16}
\end{equation*}
$$

The differential equation which $\widehat{\bar{B}_{v}}$ must satisfy is

$$
\begin{equation*}
\left[\frac{d^{2}}{d r^{2}}+k^{2}-\frac{v(v+1)}{r^{2}}\right] \widehat{B}_{v}=0 \tag{17}
\end{equation*}
$$

In the special case of the homogeneous medium, the functions $\widehat{B_{v}}$ are, apart from a multiplicative constant, the spherical Bessel functions due to Schelkunoff (30).

Inside the homogeneous earth, the choice for \hat{B}_{v} is that schelkunoff function which is regular at $r=0$, so that

$$
\begin{equation*}
\hat{B}_{v}=r^{1 / 2} J_{v+1 / 2}\left(k_{1} r\right) \tag{18}
\end{equation*}
$$

The complex wave number k_{l} characterizes the permittivity and conductivity of the earth. Thus, for $r<a, F_{r}$ is given by

$$
\begin{equation*}
F_{r}=\sum_{v} C_{v} r^{I / 2} J_{v+1 / 2}\left(k_{I} r\right) P_{v}(\cos \theta) \tag{19}
\end{equation*}
$$

From Equation 2 , the electric field intensity can be obtained from F by the relations

$$
\begin{align*}
& E_{r}=E_{\theta}=0 \tag{20}\\
& E_{\phi}=\frac{1}{r} \frac{\partial F_{r}}{\partial \theta} \tag{21}
\end{align*}
$$

To form the series for ${ }_{F}$ valid for $r>a$, one must take into account the dipole source and the dependence of k on r. Friedman's form of the solution will be used because the series for F_{r} can be completed in terms of generalized functions without specifying the exact "profile", or dependence of $\dot{\varepsilon}$ on r. Panofsky and Phillips (25) have shown that the potential F satisfies a wave equation similar to 5 , but with the magnetization vector $\omega \mu \mathrm{m}$ as a source, where μ_{0} is the permeability of the medium. The scalar wave equation for F_{r} then becomes

$$
\begin{equation*}
\left[\nabla^{2}+k^{2}\right] \frac{F_{r}}{r}=-j \omega \mu_{o} \frac{\delta(r-b) \delta(\theta)}{2 \pi r^{2} \sin \theta} \tag{22}
\end{equation*}
$$

where δ designates the Dirac delta function and the factor $2 \pi r^{2} \sin \theta$ normalizes the dipole moment to unit strength.

Next, a series for F_{r} is assumed in the form

$$
\begin{equation*}
\mathrm{F}_{\mathrm{r}}=\Sigma\left(\frac{2 \nu+1}{2}\right) \widehat{B}_{\nu}(r) \mathrm{P}_{\nu}(\cos \theta) \tag{23}
\end{equation*}
$$

Using this representation in Equation 22 , one can multiply both sides of the equation by $P_{v}(\cos \theta) \sin \theta d \theta$ and integrate from 0 to π. The result is the following equation:

$$
\begin{equation*}
\frac{d^{2}}{d r^{2}} \hat{(B)}+\left[k^{2}(r)-\frac{v(v+1)}{r^{2}}\right] \hat{B}=-j \omega \mu \frac{\delta(r-b)}{2 \pi r} \tag{24}
\end{equation*}
$$

Friedman has constructed, by the method of variation of parameters, the solution to this equation in terms of solutions to the homogeneous Equation 17 . The solutions to the "height gain" Equation 17 are known to behave approximately like Bessel functions, but the exact behavior depends on the profile. In any case, one of the linearly independent solutions, to be designated as f_{1}, can be expected to be asymptotic to $e^{+i k_{o} r}$ for
large r. The second, f_{2}, will be asymptotic to $e^{-i k_{o}} r$ for large r. Here, k_{o} is the free space wave number. Let g desienate some linear combination of the solutions f_{1} and f_{2}. Then the solution to Equation 24 has been shown by Friedman to take the forms

$$
\begin{align*}
& \widehat{\mathrm{B}}=\frac{j \omega \mu_{0} g(r) f_{1}(b)}{2 \pi r}, a<r<b \tag{25}\\
& \widehat{B}=\frac{j \omega \mu_{0} g(b) f_{1}(r)}{2 \pi r}, r>b \tag{26}
\end{align*}
$$

where W is the Wronskian of the two solutions.

$$
\begin{equation*}
W=f_{1} \frac{d g}{d r}-\varepsilon \frac{d f_{1}}{d r} \tag{27}
\end{equation*}
$$

Friedman has shown that the Wronskian is independent of r for the maenetic dipole problem. W will be written as $W(v)$ to emphasize the dependence on the parameter v. The series for ${ }_{F} r$ then become

$$
\begin{equation*}
F_{r}=\frac{j \omega \mu_{0}}{2 \pi} \sum_{v}\left(\frac{2 v+1}{2}\right) \frac{g(r) f_{1}(b)}{r V(v)} P_{v}(\cos \theta) \tag{28}
\end{equation*}
$$

for $a<r<b$, and

$$
\begin{equation*}
F_{r}=\frac{j \omega \mu_{o}}{2 \pi} \sum_{v}\left(\frac{2 v+1}{2}\right) \frac{E(b) f_{1}(r)}{r W(v)} P_{v}(\cos \theta) \tag{29}
\end{equation*}
$$

for $r>b$.
The above series converge so slowly that numerical evaluation, even by means of a digital computer, is not feasible. The Watson transformation, reviewed in Appendix A, is commonly applied to these series. The well known result is

$$
\begin{equation*}
F_{r}=\sum_{s} \frac{\left(\nu_{s}+\frac{1}{2}\right) g(b) f_{1}(r) P_{v_{s}}(-\cos \theta) j \omega \mu}{r W^{\prime}\left(v_{s}\right)\left(\sin \pi v_{S}\right)} \tag{30}
\end{equation*}
$$

for $r>b$. Here $W^{\prime}\left(v_{s}\right)$ is defined by

$$
\begin{equation*}
W^{\prime}\left(v_{s}\right)=\left[\frac{d}{d t} W(t)\right]_{t}=v_{s} \tag{31}
\end{equation*}
$$

and the numbers ν_{s} are defined by

$$
W\left(v_{s}\right)=0 .
$$

Note that v_{s} is now complex, since the above series results from integration on the complex v plane. The approximation is commonly made that

$$
\begin{equation*}
\frac{P_{v_{s}}(-\cos \theta)}{\sin \pi v_{s}}=-\left[\frac{{ }^{2} j}{\pi\left(v_{s}+l\right) \sin \theta}\right]^{1 / 2} \exp \left[j\left(v_{s}+\frac{1}{2}\right) \theta\right] \tag{33}
\end{equation*}
$$

From physical considerations, v_{s} must have a positive imaginary part to give modes which decay with increasing θ. Only those eigenvalues, v_{s}, with small imaginary part need be considered for the diffraction, or beyond-the-horizon zone, since other ν_{s} 's correspond to highly attenuated modes. The functions f and r are both dependent on the eigenvalue ν_{S}.

The series representation for E_{ϕ} can now be formed usine Equations 30, 33, and 21. The exponential denendence on θ dominates the derivative, so that

$$
\begin{equation*}
\mathbb{E}_{\phi}=\sum_{s} \frac{\omega \mu\left(v_{s+1 / 2}\right)^{2} g(b) f_{1}(r)}{r^{2} W^{\prime}\left(v_{s}\right)}\left[\frac{2}{\pi\left(v_{s}+1\right) \sin \theta}\right]^{1 / 2} \exp \left[j\left(v_{s+1 / 2}\right) \theta\right] \tag{34}
\end{equation*}
$$

for $r>b$.
It should be noted that multinlication of the functions g and f by non zero constants will still allow them to satisfy Equation 17 . In addition, the above series will be unchanged by such scaling factors, due to the function $W^{\prime}\left(\nu_{S}\right)$.

To insure the continuity of tangential components of \vec{E} and \vec{H} at the surface $r=a$, one must require the continuity of F_{r} and $\frac{d r_{r}}{d r}$ at $r=a$. The eigenvalues in Equation 34 must be identical with those in Fquation 19, since the 0 dependence of F_{r} must be the same above and below the surface $r=a$. Equation 30 , with the arguments of f and ε interchanged, forms the function F_{r} for $\mathrm{a}<\mathrm{r}<\mathrm{b}$. The boundary condition on $g(r)$ then becomes

$$
\begin{equation*}
\left.\frac{\frac{d}{d r}}{g}\right|_{r=a}=\left.\frac{\frac{d}{d r}\left[r^{1 / 2} \cdot J_{v+1 / 2}\left(k_{1} r\right)\right]}{r^{1 / 2} J_{v+1 / 2}\left(k_{1} r\right)}\right|_{r=a} \tag{35}
\end{equation*}
$$

The series for ${ }_{F}$ involves values of v for which the Ironskian vanishes. When this occurs, the functions f_{l} and p are identical, excent possibly for some multiplicative constant. The function g can then be replaced by f in Equation 35 . It is also customary to use the asvmptotic or large argument approximation for $J_{v+1 / 2}\left(k_{1} r\right)$, to give the final form for the boundary or eicenvalue equation as

$$
\frac{d f_{1}}{d r} /\left.f_{l}\right|_{r=a}=-i\left(k_{l}^{2}-\frac{v(v+1)}{a^{2}}\right)^{1 / 2}
$$

For the special case in which the conductivity of the earth tends to infinity, the wave number k_{1} becomes unbounded, and the eigenvalues are those which allow f to satisfy

$$
\begin{equation*}
f_{1}(a)=0 . \tag{37}
\end{equation*}
$$

III. SPECIFICATION OF THE PROFILE

The dependence of ε on r will now be specified. An exponential dependence of refractive index on height above the surface of the earth has been frequently suffested as cheracterizing a stable, uniform atmosphere (1,14). Tnis can be written as

$$
\begin{equation*}
n=1+\left(n_{0}-1\right) e^{-c h} \tag{38}
\end{equation*}
$$

where n is the index of refraction, n_{0} is the surface index, c is a constant parameter, and h is the height defined by

$$
\begin{equation*}
r=h+a \tag{39}
\end{equation*}
$$

It is then true that

$$
\begin{equation*}
n^{2}=1+2\left(n_{0}-1\right) e^{-c h}+\left(n_{0}-1\right)^{2} e^{-2 c h} \tag{40}
\end{equation*}
$$

Since $\left(n_{0}-1\right)$ takes on values on the order of 10^{-4}, the second exponential can be neglected. Equation 17 then becomes, in terms of the independent variable h,

$$
\begin{equation*}
\frac{\dot{a}^{2} \widehat{B}}{d h^{2}}+\left[k_{0}^{2}+2 k^{2}\left(n_{0}-1\right) e^{-c h}-\frac{v(v+1)}{(h+a)^{2}}\right] \hat{B}=0 \tag{41}
\end{equation*}
$$

Now define $Y(h)$ by writing the above equation as

$$
\begin{equation*}
\frac{d^{2} \hat{B}}{d h^{2}}+Y(h) \hat{B}=0 \tag{42}
\end{equation*}
$$

ivo rigorous, exact solution has been found for $Y(h)$ as written above (14). The Langer asymptotic solution, whose derivation is outlined in Appendix B, is felt to be the best possible approximate solution (23) and has been used in attempts to draw general conclusions about wide classes of index profiles (12,23).

To complete the Langer solution, $Y(h)$ must be a function of h whose square root can be integrated without undue difficulty. A quadratic function of h meets this requirement, and can be obtained by generating a three term power series for $e^{-c h}$ and for $\frac{1}{(h+a)^{2}}$. The quadratic form of $Y(h)$ which results can be used for h on the interval [$0, \frac{3}{c}$], while $Y(h)$ assumes its free space form for $h>3 / c$. The surface $h=3 / c$ is then a boundary between the troposphere and free space. If $Y(h)$ and $\frac{d Y(h)}{d h}$ are made continuous at $h=\frac{3}{c}$, the boundary there will be a fictitious one and no reflected wave from this boundary need be considered. The procedure outlined here will now be develoned in detail.

The function $e^{-c h}$ is approximated by $I+\bar{A}+\bar{B} h^{2}$. When one requires this quadratic to have a zero value and a zero derivative at $h=3 / c, \bar{A}$ and \bar{B} become

$$
\begin{array}{ll}
\bar{A}=-\frac{2 c}{3} & 4 ; 3 \\
\overline{3}=c^{2} / 9 & 44
\end{array}
$$

The function $\frac{l}{(h+a)^{2}}$ can be expanded in a power series as

$$
\begin{equation*}
\frac{1}{(h+a)^{2}}=\frac{1}{a^{2}}\left(1-\frac{2 h}{a}+\frac{3 h^{2}}{a^{2}}\right) \tag{45}
\end{equation*}
$$

Therefore, for $0<h<3 / c$,

$$
\begin{equation*}
Y(h)=\overline{Y(h)} \tag{46}
\end{equation*}
$$

where

$$
\begin{align*}
\overline{Y(h)} & =k_{0}^{2}+2 k_{0}^{2}\left(n_{0}-1\right)-\frac{v(v+1)}{a^{2}} \\
& +h\left[-\frac{4 c k_{0}^{2}\left(n_{0}-1\right)}{3}+\frac{2 v(v+1)}{a^{3}}\right] \tag{47}\\
& +h^{2}\left[\frac{2}{9} c^{2} k_{0}^{2}\left(n_{0}-1\right)-\frac{3 v(v+1)}{a^{4}}\right] .
\end{align*}
$$

So one can write

$$
\begin{equation*}
\overline{Y(h)}=k_{0}^{2}\left[\mathrm{An}^{2}+B h+C\right] \tag{48}
\end{equation*}
$$

where

$$
\begin{align*}
& \Lambda=\frac{2}{9} c^{2}\left(n_{0}-1\right)-\frac{3 v(v+1)}{k_{0}^{2} a^{4}} \tag{49}\\
& \bar{B}=\frac{2 v(v+1)}{k_{0}^{2} a^{3}}-\frac{4}{3} c\left(n_{0}-1\right) \tag{50}\\
& C=1+2\left(n_{0}-1\right)-\frac{v(v+1)}{k_{0}^{2} a^{2}} \tag{51}
\end{align*}
$$

$Y(h)$, for $h>3 / c$, is eiven by

$$
\begin{equation*}
Y(h)=k_{0}^{2}-\frac{v(v+1)}{(a+h)^{2}}=Y_{0}(h) \tag{52}
\end{equation*}
$$

$Y(h)$ is thus discontinuous at $h=\frac{3}{c}$ by a small amount equal to the error in the three term expansion for $\frac{v(v+1)}{(a+h)^{2}}$ at $h=3 / c$. Since this error is more than three orders of magnitude smaller than the constant C in $\bar{Y}(h)$, it will be neglected, and these functions $Y_{0}(h)$ and $\overline{Y(h)}$ will be assumed continuous. The first derivatives are likewise essentially continuous.

It will then be true that the Taylor Series expansion for $Y_{o}(h)$ about $h=3 / c$ and the series for $\overline{Y(h)}$ about $h=3 / c$ will have identical first and second terms. The solutions to

$$
\frac{d^{2} B}{d h^{2}}+Y_{0}(h) B=0
$$

and

$$
\begin{equation*}
\frac{d^{2} B}{d h^{2}}+\overline{Y(h)} B=0 \tag{54}
\end{equation*}
$$

are therefore identical, except perhans for a constant multiplier, for h on some interval including $h=3 / c$.

IV. THE HEIGHT GAIN FUNCTIOA

The Langer solutions for the differential equation

$$
\begin{equation*}
\frac{d^{2} \hat{B}}{d h^{2}}+k_{0}^{2}(q(h)) \hat{B}=0 \tag{55}
\end{equation*}
$$

take the form

$$
\begin{align*}
& f_{1}=\left[\frac{u(h)}{\mathrm{Q}(\mathrm{~h})}\right]^{1 / 2}{ }_{\mathrm{H}_{1 / 3}}{ }^{(1)}[u(h)] \\
& f_{2}=\left[\frac{\mathrm{u}(\mathrm{~h})}{\mathrm{Q}(\mathrm{~h})}\right]^{1 / 2}{ }_{\mathrm{H}_{1 / 3}}^{(2)}[u(h)]
\end{align*}
$$

$h(h)$ and h_{1} are defined by

$$
\begin{equation*}
Q(h)=k_{0}(q(h))^{1 / 2} \tag{58}
\end{equation*}
$$

and

$$
\begin{equation*}
q\left(h_{1}\right)=0, \tag{59}
\end{equation*}
$$

and $u(h)$ is fiven by

$$
\begin{equation*}
u(h)=\int_{h_{I}}^{h} k_{0} q(h)^{1 / 2} d h \tag{60}
\end{equation*}
$$

In using the Langer solution, one adjusts the parameter v after the solution is formulated. The dependence of a on \cup can be seen by comparing Equations 55 and 17 . The particular values of v which satisfy the boundary conditions imposed are the values v_{s}. For the Langer solution to be valid, it must be true that for each $v_{s}, k^{2}\left|y^{\prime}\left(h_{1}\right)\right|$ exceeds some large constant. In addition, it must be possible to extend the definition of $q(h)$ to complex values of h on some region including the points h_{l} mentioned above. Such an extension is not difficult for the case studied here, and the condition on $y^{\prime}(h)$ is satisfied for smooth, monotonically
decreasing profiles.

Under the above hypotheses, $q(h)$ has a root whose real part is positive and bounded from zero when h is real and positive. It is understood that this root is used in Equations 58 and 60 . The path of integration extends from h_{l} to some point on the real axis and then along the real axis to h. The real part of u is then an increasing function of h.

The Langer solutions for Equation 54 will be developed. The function f_{1} appearing in Equations 30 and 34 will be given by

$$
\begin{equation*}
f_{1}=\left[\frac{u(h)}{G(h)}\right]^{1 / 2}{ }_{1 / 3}^{(1)}[u(h)] \tag{61}
\end{equation*}
$$

for $0<h<3 / c$, and by

$$
\begin{equation*}
f_{I}=\frac{\left[\frac{u(3 / c)}{Q(3 / c)}\right]^{1 / 2} H_{1 / 3}^{(1)}\left[u\left(\frac{3}{c}\right)\right]}{H_{v+1 / 2}^{(1)}\left(k_{0} 3 / c\right)} \tag{62}
\end{equation*}
$$

for $h>3 / c$.
The constants A, B, and C will now be evaluated for complex values of v. It is known from previous work (14) that the real part of v will be approximately equal to k_{0} a. Since $|v|$ is larse compared to unity,

$$
\begin{equation*}
v(v+1) \approx v^{2} \tag{63}
\end{equation*}
$$

The real variables α and B will be defined by

$$
\begin{equation*}
v=k_{o} a+\alpha+j \beta \tag{64}
\end{equation*}
$$

Then the followinp relations can be written, keeping only the dominant terms:

$$
\begin{equation*}
\nu^{2}=\left(k_{0} a\right)^{2}+2 k_{0} a \alpha+2 j \beta k_{0} a \tag{65}
\end{equation*}
$$

$$
\begin{align*}
& C=2\left(n_{0}-1\right)-\frac{2 \alpha}{k_{0} a}-j \frac{2 \beta}{k_{0}{ }^{2}} \tag{66}\\
& B=\frac{2}{a}-\frac{4 c\left(n_{0}-1\right)}{3}+j \frac{4 \beta}{k_{0} a^{2}} \tag{67}\\
& A=\frac{2}{9} c^{2}\left(n_{0}-1\right)-\frac{3}{a^{2}}-j \frac{6 \beta}{k_{0} a^{3}} \tag{68}
\end{align*}
$$

By consideration of the typical values of c, n_{0} and k_{0}, and anticipated values of β, it is found that

$$
\begin{equation*}
\frac{\operatorname{Re} A}{\operatorname{In} A} \approx 10^{6} \tag{69}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\mathrm{ReB}}{\mathrm{ImB}^{B}} \approx 10^{4} \tag{70}
\end{equation*}
$$

A and B will therefore be taken as real parameters describing the tronosphere. The relations

$$
\begin{equation*}
c_{0}=2\left(n_{0}-1\right)-\frac{2 a}{k_{0} a^{2}} \tag{71}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{1}=\frac{2 \beta}{k_{o} a} \tag{72}
\end{equation*}
$$

will arbitrarily define the real variables C_{0} and C_{1}. This will require that

$$
\begin{equation*}
C=C_{0}-j C_{1} \tag{73}
\end{equation*}
$$

The root of $A h^{2}+B h+C$ closest to the origin will now be found.

$$
\begin{aligned}
h_{1} & =\frac{-B+\left(B^{2}-4 A C\right)^{1 / 2}}{2 A} \\
& =\left(\frac{B}{2 A}\right)\left(-1+\left[1-\frac{4 A C}{B^{2}}\right]^{I / 2}\right)
\end{aligned}
$$

$\left[1-\frac{4 \mathrm{AC}_{0}}{\mathrm{~B}^{2}}+j \frac{4 \mathrm{AC}_{1}}{\mathrm{~B}^{2}}\right]^{1 / 2} \approx\left[\left(1-\frac{4 \mathrm{AC} O_{0}}{\mathrm{~B}^{2}}\right)^{2}+\left(\frac{4 \mathrm{AC}_{1}}{\mathrm{~B}^{2}}\right)^{2}\right]^{1 / 4}\left(1+\frac{4 \mathrm{AC}_{1}}{2 B^{2}}\right)$
Now make use of the relation that, for small ε,

$$
\begin{gather*}
{[1+\varepsilon]^{1 / 4}=1+\frac{\varepsilon}{4}} \tag{76}\\
{\left[\left(1-\frac{4 A C_{O}}{B^{2}}\right)^{2}+\left(\frac{4 A C_{1}}{B^{2}}\right)^{2}\right]^{1 / 4} \approx 1-\frac{2 A C_{0}}{B^{2}}+4\left(\frac{A C_{o}}{B^{2}}\right)^{2}+4\left(\frac{A C_{1}}{B^{2}}\right)^{2}} \tag{77}
\end{gather*}
$$

After some algebraic manipulation the result is

$$
\begin{equation*}
h_{1} \approx-\frac{C_{0}}{B}+\frac{2 A}{B^{3}}\left(C_{0}^{2}+C_{1}^{2}\right)+j \frac{C_{1}}{B}\left(1-\frac{2 A C_{o}}{B^{2}}\right) \tag{78}
\end{equation*}
$$

The root h_{l} is thus seen to lie close to the root $\frac{-C}{B}$ which would result if $A=0$. In the following integration, h_{I} will be taken as

$$
\begin{equation*}
h_{1}=-\frac{C_{0}}{B}+j \frac{C_{1}}{B} \tag{79}
\end{equation*}
$$

Of concern here is the integration designated in Equation 60 , from the root h_{l} to some point h on the real axis. This intearation on the complex h plane will be carried out, for simplicity, along two rectilinear paths. Path one extends from the root h_{l} to the real axis, while path two leads along the real axis to h. This integration path is shown in Figure 2.

Of particular interest is the integration to the origin, since the resulting function $u(0)$ will be involved in the eigenvalue equation for the perfectly conducting earth. It is easily seen that C_{1} is a positive number, since the attenuation of each mode with θ, or distance, goes as $e^{-\theta \beta} s$, where s is the mode integer. It is of interest to inquire into the sign of C_{0}.

Figure 2. The path of integration for $u(h)$

If C_{0} is positive, the root h_{l} lies in the second quadrant of the h plane. As h takes on values along path one, $\left[A h^{2}+B h+C\right]$ hes a negative imaginary part. Then $\left[\mathrm{Ah}^{2}+\mathrm{Bh}+\mathrm{C}\right]^{1 / 2}$ moves along some contour in the second or fourth quadrant, denending on which square root is chosen. For example, suppose the root with the nositive real part is taken. Then write
path $\int\left[A h^{2}+B h+C\right]^{1 / 2} d h=\int_{C_{1} / B}^{o} w_{1}(x) j d x-j \int_{C_{1} / B}^{o} v_{1}(x) j d x$
where $w_{1}(x)$ and $v_{C}(x)$ are non-negative functions of the real variable x on the interval $\left[0, \frac{1}{3}\right]$. Then τ_{1} and τ_{2}, defined by

$$
\begin{equation*}
\int_{0}^{C_{1} / B} w_{1}(x) d x=\tau_{1} \tag{81}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{C_{1} / B} v_{1}(x) d x=\tau_{2} \tag{82}
\end{equation*}
$$

are non-negative numbers.
$\begin{aligned} & \text { path } \\ & \text { one }\end{aligned} \int\left[\mathrm{Ah}^{2}+\mathrm{Bn}+\mathrm{C}\right]^{1 / 2} \mathrm{dh}=-j \tau_{1}-\tau_{2}$
I'he choice of the square root with a negative real part along this path gives a similar result; with opposite sign. So one can write
$\begin{aligned} & \text { path } \\ & \text { one }\end{aligned}\left[\mathrm{Ah}^{2}+\mathrm{Bh}+\mathrm{C}\right]^{I / 2} \mathrm{dh}= \pm\left(\tau_{2}+j \tau_{1}\right)$
Along path two, h is real and $\left[A h^{2}+B h+C\right]$ again has a negative imaginary part. Here the square root with a nositive real part must be taken, since it is necessary that $u(h)$ be an increasing function of h for
large h. The root $\left[\mathrm{Ah}^{2}+\mathrm{Bh}+\mathrm{C}\right]^{1 / 2}$ therefore lies in the fourth quadrant.

$$
\begin{equation*}
\int_{-C_{0}}^{o}\left[A h^{2}+B h+C\right]^{1 / 2} d h=\int_{-\frac{C_{0}}{B}}^{o}\left[w_{2}(x)-j v_{2}(x)\right] d x \tag{85}
\end{equation*}
$$

where $w_{2}(x)$ and $v_{2}(x)$ are non negative functions of x. Define τ_{3} and τ_{4} by

$$
\begin{equation*}
\int_{-\frac{C}{C}}^{C_{B}} w_{2}(x) d x=\tau_{3} \tag{86}
\end{equation*}
$$

$$
\begin{equation*}
\int_{-\frac{C_{0}}{\mathrm{~B}}}^{0} \mathrm{v}_{2}(x) \mathrm{dx}=\tau_{4}, \tag{87}
\end{equation*}
$$

where τ_{3} and τ_{4} are non nesative numbers if C_{0} is nositive as assumed. It is then true that the integration over path two cives

$$
\begin{equation*}
\int\left[A h^{2}+B h+C\right]^{1 / 2} d h=\tau_{3}-j \tau_{4} \tag{88}
\end{equation*}
$$

The boundary condition at the surface of the perfectly conducting earth requires that

$$
\begin{equation*}
\pm\left(\tau_{2}+j \tau_{1}\right)+\tau_{3}-j \tau_{4}=-\frac{\tau_{s}}{k}, \tag{89}
\end{equation*}
$$

as will be shown later, where τ_{s} is a positive real number. This equation cannot be satisfied for either choice of sign.

If C_{o} is chosen to be negative, integration along path one is essentially unchanged. For h real and on path two, integration is in the negative h direction. The numbers τ_{3} and τ_{4}, still defined by Equations 86 and 87 , are then both negative, and the above equation can be satisfied by the choice of the lower sign.

The integration necessary to form $u(h)$ is oresented in Appendix C. The result is

$$
\begin{align*}
\frac{u(h)}{k_{0}} & =\left[\frac{2 A h+B}{4 A}\right]\left[A h^{2}+B h+C\right]^{1 / 2} \\
& +\frac{4 A C-B^{2}}{8 A^{3 / 2}} \log \frac{2 A^{I / 2}\left[A h^{2}+B h+C\right]^{I / 2}+2 A h+B}{2 A^{I / 2}\left[-j C_{1}\right]^{1 / 2}-\frac{2 A C_{0}}{B}+B} \\
& -\frac{B\left(1-\frac{2 A C}{B_{0}^{2}}\right)}{4 A}\left(-j C_{1}\right)^{1 / 2}-j \frac{C_{1}^{3 / 2}}{2 B}-\frac{5 C_{1}^{3 / 2}}{8} \tag{90}
\end{align*}
$$

The evaluation of this function for $h=0$ is also accomplished in Appendix C.

V. The Eigenvalues for the perfectly conducting earmi

For the perfectly conducting earth, the eigenvalue equation is given by Equation 37 . Written in terms of the Langer solution, this becomes

$$
\begin{equation*}
\left[\frac{\mathrm{u}(0)}{\mathrm{Q}(0)}\right]^{1 / 2} \mathrm{H}_{1 / 3}^{(1)}[u(0)]=0 \tag{91}
\end{equation*}
$$

The eigenvalues ν_{s} are those values of v for which

$$
\begin{equation*}
u(0)=-\tau_{s} \tag{92}
\end{equation*}
$$

where τ_{s} are defined by

$$
\begin{equation*}
H_{1 / 3}^{(1)}\left(-\tau_{s}\right)=0 \tag{93}
\end{equation*}
$$

The two transcendental equations in C_{0} and C_{1} thus are written

$$
\begin{equation*}
\operatorname{Re} u(0)=-\tau_{s} \tag{94}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Im} u(0)=0 \tag{95}
\end{equation*}
$$

From the results of Appendix C, the above relations become

$$
\begin{align*}
& \frac{-D^{2}}{4 A^{1 / 2}}+\frac{D^{2} \cos ^{2} \frac{\Psi}{2}}{2 A^{1 / 2}}+\frac{D^{3} \cos \frac{\Psi}{2}}{B}-\frac{4 D^{3} \cos ^{3} \frac{\Psi}{2}}{3 B} \\
& \frac{-C_{0}}{4 A^{1 / 2}}+\frac{C_{0} D \cos \frac{\psi}{2}}{B}-\frac{C_{1} D \sin \frac{\Psi}{2}}{B}=\frac{-\tau}{k_{0}} \tag{96}
\end{align*}
$$

and

$$
\begin{align*}
& \frac{C_{1}}{4 A^{1 / 2}}-\frac{C_{1}^{3 / 2}}{2 \sqrt{2 B}}-\frac{D^{2} \sin \frac{\Psi}{2} \cos \frac{\Psi}{2}}{2 A^{1 / 2}}-\frac{C_{1} D \cos \frac{\Psi}{2}}{B} \\
& -\frac{C_{0} D \sin \frac{\Psi}{2}}{B}=0 . \tag{97}
\end{align*}
$$

D and Ψ are defined by the relations

$$
\begin{equation*}
D=\left(C_{0}^{2}+C_{1}^{2}\right)^{1 / 4}=\left|C^{1 / 2}\right| \tag{98}
\end{equation*}
$$

and

$$
\begin{equation*}
\Psi=\arctan \frac{-\mathrm{C}_{1}}{\mathrm{C}_{0}} . \tag{99}
\end{equation*}
$$

The technique for finding eigenvalues v_{s} for Equation 34 is to choose values for A and B which describe the profile to be analyzed, and solve Equations 96 and 97 simultaneously for C_{0} and C_{1} for each value τ_{s}. The values of C_{0} and C_{1} then determine α and σ by Equations 71 and 72 . The first four values of τ_{s}, to three places, have been given by Bremmer as $2.38,5.50,8.60$, and 11.73.

Figure 3 presents the locus of points ($\mathrm{C}_{\mathrm{O}}, \mathrm{C}_{1}$) which satisfy Equation 97 , and the loci of solutions to Equation 96 for two typical values of $\frac{\tau}{k}$. As s takes on the values $1,2,3, \ldots$, for a civen frequency, the curves intersect at increasing values of C_{1}. The points of intersection give the eigenvalues α_{s} and β_{s}. For a giver integer s, the intersection occurs at smaller values of C_{1}, as k_{o} increases. The value of β increases with increasinf frequency, however, due to Equation 72 .

The attenuation parameter β_{1} for the first and stroncest mode has been plotted versus frequency for several choices of $\left(n_{0}-1\right)$ and c in Figure 4. The work of Post (28) indicates that the initial value of the gradient of refractive index is substantially more important as a parameter than the scale height. Therefore c has been given values for Figure 4 which match the initial gradient of the present model to those which are typical in the atmosphere. The upper curve gives Friedman's result for the corresponding variable. This curve is nearly independent of the parameters c and ($n_{0}-1$), and indicates that Friedman's first mode is much

$$
\begin{aligned}
& n_{0}-1=2.48 \times 10^{-4} \\
& 1 / c=5.15 \times 10^{3} \mathrm{~meters}
\end{aligned}
$$

Fifure 3. The loci of solutions to the transcendental enuations

Tirure 4. Attenuation of first rode versus frequency
more highly attenuated throughout the frequency range of interest. Appendix D shows how Triedman's expression for β can be found as a special case of the present model.

It should be noted that the first mode is dependent on distance along: the earth according to the function $e^{-\beta_{1}} \theta$, where θ is the ancle away from the source. A lower value of β_{1} means a slower decay of the field strength versus distance. It can be seen from Firure 4 that an increase in ($n_{0}-1$), or in c, or both, results in a smaller β_{l} and stronper diffraction fields.

VI. THE COMPLETED SERIES FOR E_{ϕ}

To complete the series for the electric field, the factor $W^{\prime}\left(v_{s}\right)$ must be evaluated for this particular profile.

$$
\begin{equation*}
W^{\prime}=\frac{\partial f_{1}}{\partial v} \frac{d g}{\partial r}+f_{1} \frac{\partial^{2} g}{\partial v \partial r}-\frac{\partial \varepsilon_{1}}{\partial v} \frac{\partial f_{1}}{\partial r}-g{\frac{\partial^{2}}{\partial v \partial r} f_{1}}^{\partial r} \tag{100}
\end{equation*}
$$

If the wave number of the earth dominates the right hand side of Equation 36 , it must be approximately true that

$$
\begin{equation*}
\frac{\partial}{\partial v}\left[\frac{\frac{d \xi}{d r}}{\xi}\right]_{r=a}=0 \tag{101}
\end{equation*}
$$

Then the factor W^{\prime} assumes the customary form (12)

$$
\begin{equation*}
V^{\prime}\left(v_{s}\right)=\left.\frac{\partial f_{1}}{\partial v} \frac{\partial f_{1}}{\partial r}\right|_{r=a}-\left.f_{1} \frac{\partial^{2} f_{1}}{\partial v \partial r}\right|_{r=a} \tag{102}
\end{equation*}
$$

where f_{l} is now treated as a function of the two independent variables v and r. The above relation is adequate unless the earth is taken to be poorly conductinf.

For the case of the perfectly conducting earth, Equation 102 simplifies to

$$
\begin{equation*}
W^{\prime}\left(v_{s}\right)=\left.\frac{\partial f_{1}}{\partial v} \frac{\partial f_{1}}{\partial r}\right|_{r=a} ^{v=v_{s}} \tag{103}
\end{equation*}
$$

The expression 103 can be evaluated using the form for ${ }_{f}(r)$ already developed. Ilowever, the resultine series for \mathbb{E}_{ϕ} does not lend itself to numerical evaluation as well as an alternate method due to Friedman (12).

Suppose that the earth is a good, but not perfect conductor. Then E'quation 102 can be written as

$$
\begin{aligned}
W^{\prime} & =\left.\left(f_{1}\right)^{2} \frac{\partial}{\partial \nu}\left(\frac{\partial / \partial r f_{1}}{f_{l}}\right)\right|_{r=a} \\
& =\left[f_{1}(a)\right]^{2} a
\end{aligned}
$$

where M is defined by the last equation. Friedman has found an approximate value for M by an involved procedure that will only be outlined here. To proceed, it must be recosnized that the dominant term in the expression $\frac{\partial f_{1}}{\partial r / f_{1}}$ involves the function

$$
\begin{equation*}
Z(x)=\frac{\frac{d}{d x}^{\pi i} 1 / 3^{(1)}(x)}{H_{1 / 3}^{(1)}(x)} \tag{106}
\end{equation*}
$$

Only this dominant term is saved. Then, by examining the equation satisfied by $\mathrm{H}_{1 / 3}{ }^{(1)}(x)$, it is found thet $Z(x)$ satisfies the Ricetti equation

$$
\begin{equation*}
z^{1}+z^{2}+\frac{z}{x}+1-\frac{1}{9 x^{3}}=0 \tag{107}
\end{equation*}
$$

Therefore, for large x,

$$
\begin{equation*}
z^{\prime} \approx 1-z^{2}-\frac{z}{x} \tag{108}
\end{equation*}
$$

When the differentiation with respect to v is performed in Equation 104 , $Z '$ is eliminated with the above equation, and Z is eliminated by Equation 36 . The result, when the earth is a good but finite conductor, is

$$
\begin{equation*}
n=\frac{k_{1}^{2}}{k_{0}}\left(1-\frac{k^{2}(a)}{k_{l}^{2}}\right) \tag{109}
\end{equation*}
$$

where $k(a)$ is the surface wave number. The use of this approximate formula is probably justified if, as in the present study, the variation of field strength with distance is of prime importance.

The series for E_{ϕ} thus takes the form

$$
\begin{align*}
E_{\phi}= & \frac{\omega \mu\left(v_{s+1 / 2)^{2}}^{s k_{1}^{2}}\right.}{\frac{k_{0}^{2}}{k_{0}}\left(1-\frac{k^{2}(a)}{k_{1}^{2}}\right) r^{2}}\left[\frac{f_{1}(b)}{f_{1}(a)} \frac{f_{1}(r)}{f_{1}(a)}\right] \\
& \times\left[\frac{2 j}{\pi\left(v_{s}+1\right) \sin \theta}\right]^{1 / 2} \exp \left[j\left(v_{s}+\frac{1}{2}\right) \theta\right] \tag{110}
\end{align*}
$$

The results of the present analysis have been compared with other results by computing the ratio of field strencth E_{ϕ} to the free space field strength which would result in the absence of the earth. This ratio has been expressed in decibels and plotted in Figures 5 and 6 for two choices of frequency. Curve 1 indicates the result computed by Post (28) for a linear atmosphere, while curve 3 indicates the first normal mode as given by Friedman. Curve 2 represents the field as written in Equation 110 . Friedman's formula gives a hishest attenuation throughout this range of frequencies. Above about 412 mepacycles per second the field strength of the present method suffers somewhat less attenuation than that of Post (28).

Experimental field strength measurements at 190 megacycies per second are presented in Ghose and Albright (16) which were taken during neriods when meteorological stations indicated a uniform linear fradient of refractive index along the 127 mile path. An attenuation of about $3 / 4$ decibel per mile was measured. This agrees well with curve 2 in Figure 5.

In Fipure 7, attenuation in decibels of the field strength is plotted versus the initial or surface value of the gradient of refractive index.

Firure 5. Decibels of attenuation versus distance at 1.90 meracycles ner second

Firure 6. Decibels of attenuation versus distance at lil2 meracycles ner second

Fifure 7. Decibels of attenuation at 127 miles and 190 meracycles ner second versus initial gradient of refractive index.

Curve 2 represents the results of the present study, while curve 1 gives the attenuation predicted by Post (28). Curve 2 is plotted for $n_{0}-1=$ 4×10^{-4} and c changes as

$$
\begin{equation*}
\frac{d n}{d h}(0)=-\frac{2}{3}\left(n_{0}-1\right) c \tag{111}
\end{equation*}
$$

The selection of frequency and distance given in Fisure 7 was made so that these curves could be compared with similar experimental measurements reported by Ghose and Albright (16). The dotted line in Figure 7 indicates the experimental data. Only the slope of this curve is significant since absolute field strengths were not reported.

The agreement with experiment that has been discussed is thought to be particularly sicnificant in view of the fact that the data was taken When meteorological instruments indicated that the actual profile was comparable to this model.
VII. COMCLUSIONS

The classical or normal mode solution for electromagnetic wave propagation around a spherical earth can be found for the particular profile of refractive index which is described by a quadratic function. The inclusion of the quadratic term in the orofile description alters the dependence of the Langer solution on the parameter v. The careful solution of the boundary value problem for this profile results in eifenvalues which differ significantly from the values obtained for the homogeneous atmosphere.

The dependence of the eigenvalues on frequency is essentially unchanged from the homogeneous case. The eigenvalues, and hence the diffraction field strenfth, show a marked denendence on the surface value of the refractive index and its gradient. An increase in the surface refractive index or in its initial sradient effectively increases the diffraction field strength. The denendence of field strength on the initial gradient of refractive index, predicted by this analysis, agrees with the results of other investipations and with corresponding experimental data. Attenuation of field strength with distance, computed by the present method, is in good arreement with experimental measurements taken under meteorological conditions which suggest a meaningful comparison.

VIII. BIBLICGRAPHY

1. Bean, B. R. and Thayer, G. D. Models of the atmospheric radio refractive index. Institute of Radio Engineers Proceedings 47:740-755. 1959.
2. Booker, H. G. and Gordon, W. E. A theory of radio scattering in the tronosphere. Institute of Radio Engineers Proceedings 38:401-412. 1950.
3. Bremmer, H. On the theory of wave propagation through a concentrically stratified troposphere with a smooth profile, expansion of the rigorous solution. I:ational Bureau of Standards Journal of Research 66D:31-52. 1962.
4. Bremmer, f. On the theory of wave propagation through a concentrically stratified troposphere with a smooth profile. National Bureau of Standards Journal of Research 64D:467-482. 1960.
5. Bremmer, H. Terrestrial radio waves. New York, I.Y. Elsevier Publishine Company, Inc. 1949.
6. Budden, K. G. Radio waves in the ionosphere. London, England. Cambridge University Press. 1061.
7. Budden, K. G. The wave-guide mode theory of wave propagation. Englewood Cliffs, Hew Jersey. Prentice-iiall, Inc. 1961.
8. Bullington, K. Propagation of vhf and shf waves beyond the horizon. Institute of Radio Engineers Proceedings 38:1221-1222. 1951.
9. Carroll, T. J. and Fing, R. M. Twilight resion propagation of short radio waves by modes contained in the normal air. Massachusetts Institute of Technolopy Lincoln Laboratory Technical Report TR-190. 1958.
10. Dunham, J. L. The Wentzel-Brillouin-Kramers method of solving the wave equation. Physical Review 41:713-720. 1932.
11. Feinstein, J. The role of partial reflections in tropospheric propagation beyond the horizon. Institute of Radio Engineers Antennas and Propagation Transactions AP-2:9-27. 1952.
12. Friedman, B. Propagation in a non-homogeneous atmosphere. In Theory of Electromagnetic Waves: a Symposium. po. 317-350. New York, H.Y. Interscience Publishers, Inc. 1951.
13. Furry, W. H. Theory of characteristic functions in problems of anomelous propagation. Massachusetts Institute of Technology Radiation Laboratory Report 680. 1945.
14. Gerks, I. H. Introduction to the problem of proparation in a stratified atmosphere over a spherical earth. Unnublished multilithed memorandum. Cedar Rapids, Iowa. Collins Radio Company. 1963.
15. Gerks, I. H. Propagation at 412 megacycles from a high power transmitter. Institute of Radio Engineers Proceedings 39:1374-1382. 1951.
16. Ghose, R. i. and Albright, W. G. Vhf field intensities in the diffraction zone. Institute of Radio Engineers Antennas and Propagation Transactions AP-2:35-38. 1954.
17. Harrington, R. F. Time-harmonic electromagnctic fields. Hew York, S.Y. ZcGraw-Fill Book Company, Inc. 1961.
18. Farvard University Computation Laboratory Staỉf. Tiables of modifieã hankel functions of order one-third and their derivatives. Cambridge, Mass. Harvara University Fress. 1945.
19. Kerr, D. E'., ed. Propafation of short radio waves. Lew York, iI.Y. HeGraw-iilll Book Co., Inc. 1951.

20 Langer, R. E. Asymptotic solutions of a differential equation in the theory of microwave propagation. In Theory of Electromagnetic Waves: a Symposium. mp. 73-84. Hew York, H.Y. Interscience Publishers, Inc. 1951.
21. Langer, R. E. On the asymptotic solutions of differential equations, with an application to the Bessel functions of large order. American Wathematical Society Transactions 34:447-480. 1932.
22. Hegaw, E. C. S. The scattering of El : waves by atmospheric turbulence. Nature 166:1100-1104. 1950.
23. Northover, F. H. Lone distance vhf fields. Canadian Journal of Physics 33:24l-256. 1955.
24. Ortusi, J. The various theories on the propagation of ultrashort waves beyond the horizon. Institute of Radio Engineers Antennas and Propagation Transactions AP-3:86-91. 1955.
25. Panofsky, W. K. H. and Phillips, M. Classical electricity and magnetism. 2nd ed. Reading, Massachusetts. Addison-Viesley Publishing Company, Inc. 1962.
26. Pekeris, C. L. Asymptotic solutions for the normal modes in the theory of microwave propacation. Journal of Applied Physics 17:1108-1124. 1946.
27. Pekeris, C. L. and Ament, W. S. Characteristic values of the first normal mode in the problem of propagation of microwaves through an atmosphere with a linear-exponential modified index of refraction. Philosophical Magazine 38:801-824. 1947.
28. Post, R. E. The flat-earth approximation to the solution of electromagnetic propagation in a stratified terrestrial atmosphere. Unpublished Ph.D thesis. Ames, Iowa. Library, Iowa State University of Science and Technology. 1962.
29. Rayleigh, Lord. The problem of the whispering gallery. Philosophical Magazine 20:1001-1004. 1910.
30. Schelkunoff, S. A, Electromannetic waves. Princeton, Hew Jersey. D. Van Nostrand Company, Inc. 1943.
31. Schelleng, E. B., Burrows, C. R. and Ferrell, E. B. Ultra-shortwave propagation. Institute of Radio Engineers Proceedinfs 21:427-463. 1933.
32. Stratton, J. A. Electromannetic theory. inew York, N.Y. KcGrawHill Book Company, Inc. 1941.
33. van der Pol, B. and Bremmer, H. The propagation of radio waves over a finitely conducting earth. Philosophical-Magazine 25:817-834. 1938.
34. Wait, J. R. Radiation from a dipole over a stratified ground. Institute of Radio Encineers Antennas and Propacation Iransactions AP-1:9-12. 1953.
35. Wait, J. R. Review of mode theory of radio pronacation in terrestrial wave
36. Watson, $\mathrm{G} . \mathrm{IN}$. The diffraction of electric waves by the earth. Royal Society of London Droceedings Series A, 05:83-99. 1919.
IX. ACKionledgements

The author wishes to thank Dr. P. E. Post and his major professor, Dr. R. ii. Stewart, Jr., for many helpful suggestions during the preparation of this thesis.

X. APPENDIX A

Watson (36) considered a series of the form

$$
S=\sum_{0}^{\infty}\left(\frac{2 n+1}{2}\right) a_{n} \underline{n}_{n}(\cos \theta)
$$

and showed that it could be represented as the integral

$$
\begin{equation*}
I=\frac{1}{2 \pi j} \int_{C} \frac{(t+1 / 2) a_{t} P_{t}(-\cos \theta)}{\sin \pi t} d t \tag{113}
\end{equation*}
$$

where C is a contour which starts at $\infty-j \delta$ on the t plane, soes below the real axis to $t=-1 / 2$, and returns above the real axis to $\infty+j \delta$, as in Figure 8.

If a_{t} and $P_{t}(-\cos \theta)$ are analytic functions of t, the sinfularities of the integrand occur for those real values of t inside C for which singt vanishes. Then I can be written as a sum of residues

$$
I=-\sum_{0}^{\infty(n+1 / 2) a_{n} P_{n}(-\cos \theta)} \frac{\pi \cos n \pi}{\sum_{0}} \frac{1}{\pi} \sum_{0}^{\infty}(n+1 / 2) a_{n} F_{n}(\cos \theta)
$$

Then this procedure is applied to Equation 29 ,

$$
\begin{equation*}
F_{r}=-\frac{\omega \mu}{4 \pi} \int_{C} \frac{(\nu+I / 2)_{E}(b) f_{I}(r)}{r_{\nu}} \frac{P_{\nu}(-\cos \theta)}{\sin \pi \nu} d \nu \tag{115}
\end{equation*}
$$

On the part of C below the real axis, desisnated by C_{1} in Firure 4 , v is replaced by $-v-1$, so that C_{1} is transformed into C_{3} and

$$
\begin{aligned}
F_{r}= & -\frac{\omega \mu}{4 \pi} \int_{C_{3}} \frac{(v+1 / 2))_{5}(b) f_{1}(r) p_{-v-1}(-\cos \theta) d v}{-v-1} \sin \pi v \\
& -\frac{\omega \mu}{4 \pi} \int_{C_{2}} \frac{(v+1 / 2) g(b) f_{1}(r) P_{v}(-\cos \theta) d v}{W_{v} \sin \pi v}
\end{aligned}
$$

The contours C_{2} and C_{3} are now rotated upward until they enclose the positive half of the line given by

Figure 8. Contours of integration for the Watson transformation

$$
\operatorname{Re} v=-\frac{1}{2}
$$

As the contour is moved in this manner, it may pass over some noles of the integrand. Then F_{r} can be expressed as the sum of the residues at these poles, plus two integrals over the line described above. Put $v=-\frac{1}{2}=j \tau$, so that

$$
\begin{align*}
F_{r}= & \sum \text { residues }+\frac{\omega u}{4 \pi} \int_{0}^{\infty} \frac{\tau j \tau-1 / 2(-\cos \theta)}{-\cosh \pi \tau} x \\
& {\left[\frac{\pi(b) f_{1}(r)}{r W_{j \tau-1 / 2}}-\frac{F(b) f_{1}(r)}{r W_{-i \tau-1 / 2}}\right] d \tau } \tag{118}
\end{align*}
$$

Friedman has shown this integral to be zero when the earth is perfectly conducting, and small enough to be dropped when the dielectric constant of the earth is large compared to the surrounding medium.

The poles of the original integrand are at those values of v for which $w=0$. Then the residues at these points v_{s} can be written

$$
\begin{equation*}
F_{r}=\sum_{s}^{\omega \mu} \frac{\left(v_{s}+1 / 2\right) g(b) f_{I}(r) p_{v_{s}}(-\cos \theta)}{r W^{\prime}\left(v_{s}\right)\left(\sin \pi v_{s}\right)} \tag{119}
\end{equation*}
$$

This brief explanation of the Watson transformation is due rainly to Bremmer (5) and Friedman (12).

XI. APPENDIX B

It is desirable to present a brief discussion of the Langer asymptotic solution for a particular ordinary differential equation. It is imoortant that the symbols used to define functions and parameters in this section should not be confused with those in the remainder of this thesis. The notation follows that of Langer (21).

The differential equation to be solved has the form

$$
\begin{equation*}
u^{\prime \prime}(z)+\left[\rho^{2} \phi^{2}(z)-X(z)\right] u(z)=0 \tag{120}
\end{equation*}
$$

where $X(z)$ is assumed to be an analytic function in the region of interest R. The coefficient $\phi^{2}(z)$ is of the form

$$
\begin{equation*}
\phi^{2}(z)=z^{\nu} \phi_{1}^{2}(z) \tag{121}
\end{equation*}
$$

where v is a real non negative constant and $\phi_{1}^{2}(z)$ is a single-valued analytic function bounded from zero.

How define

$$
\begin{equation*}
\Phi=\int_{0}^{z} \phi(z) d_{z} \tag{122}
\end{equation*}
$$

where the integration is performed on a Riemann surface which is appropriate to a single-valued representation of $\phi(z)$. The intearal is then independent of path and has the form

$$
\begin{equation*}
\Phi=z^{v / 2+1} \quad \Phi_{1}(z) \tag{123}
\end{equation*}
$$

with $\Phi_{1}(z)$ single-valued and analytic in R and $\Phi_{1}(0) \neq 0$.
Define μ by

$$
\begin{equation*}
\mu=\frac{1}{v+2} \tag{124}
\end{equation*}
$$

and $\Psi(z)$ by

$$
\Psi(z)=\frac{\{\Phi(z)\}^{\frac{1}{2-\mu}}}{\phi(z)^{1 / 2}}
$$

If

$$
\begin{equation*}
\xi=\rho \Phi(z) \tag{126}
\end{equation*}
$$

and

$$
\begin{equation*}
y(z)=\Psi(z) \xi^{\mu} C_{ \pm \mu}(\xi) \tag{127}
\end{equation*}
$$

where $C_{ \pm \mu}$ is a cylindrical function, $y(z)$ satisfies the related equation

$$
\begin{equation*}
y^{\prime \prime}(z)+\left\{\rho^{2} \phi^{2}(z)-\omega(z)\right\} y(z)=0 \tag{128}
\end{equation*}
$$

where $\omega(z)$ is analytic and single-valued. The technique now is to show that the solutions to 120 are expressible in terms of $y(z)$. The cylindrical functions to be used are liankel functions, so

$$
y_{k, j}(z)=\begin{aligned}
& \frac{\psi(z)}{j^{k} A_{i}} \xi^{\mu} H_{\mu}^{(i)}\left(\xi e^{-k \pi j}\right), \text {, } k \text { even } \\
& \\
& \frac{\psi(z)}{j^{k} \Lambda_{3-i}} \xi^{\mu} H_{\mu}^{(3-i)}\left(\xi e^{-k \pi j}\right), k \text { odd, }
\end{aligned}
$$

where

$$
\begin{equation*}
A_{i}=\left(\frac{2}{\pi}\right)^{1 / 2} e^{ \pm\left(\mu+\frac{1}{2}\right) \pi i} / 2 \tag{130}
\end{equation*}
$$

By defining

$$
\begin{equation*}
\theta(z)=X(z)-\omega(z), \tag{131}
\end{equation*}
$$

Equation 120 becomes

$$
\begin{equation*}
u^{\prime \prime}(z)+\left\{\rho^{2} \phi^{2}(z)-w(z)\right\} u(z)=\theta(z) u(z) . \tag{132}
\end{equation*}
$$

The solutions for $u(z)$ then are

$$
\begin{aligned}
u_{k, i}(z)=y_{k, i}(z)+\frac{1}{2 j \rho} 2 \mu & \int\left[y_{k, 1}(z) y_{k, 2}\left(z_{l}\right)-y_{k, 2}(z) y_{k, 1}\left(z_{l}\right)\right] \\
& x \theta\left(z_{l}\right) u_{k, i}\left(z_{l}\right) d z_{l}
\end{aligned}
$$

Langer has evaluated the integral above as a series of terms involving ρ^{-n}, where n is the number of the series term. An examination of the convergence properties of the series shows that, for large ρ, the sum goes to zero. The solutions $u_{k, i}(z)$ go asymptotically to $y_{k, i}(z)$ as ρ becomes large.

XII. APPERDIX C

To complete the integration for $u(h)$ alone path one, make the change of variable

$$
\begin{equation*}
h=\frac{-C_{0}}{3}+j x \tag{134}
\end{equation*}
$$

Then one can write

$$
\begin{equation*}
A h^{2}+B h+C=x^{2}(-A)+x\left(j B-j \frac{2 A C_{0}}{3}\right)+C-C_{0}+\frac{A C_{0}^{2}}{3^{2}} . \tag{135}
\end{equation*}
$$

It is approximately true that

$$
\begin{equation*}
C-C_{0}+\frac{A C_{0}^{2}}{B^{2}} \approx-i C_{1} \tag{136}
\end{equation*}
$$

since C_{1} is much larger than the anticipated values of $\frac{A C_{0}{ }^{2}}{B^{2}}$. Now define the parameters \because, in, by the relations

$$
\begin{align*}
& A=A \\
& i=-j B\left(I-\frac{2 A C_{0}}{B^{2}}\right) \tag{137}\\
& P=+j C_{1}
\end{align*}
$$

and note that

$$
\begin{equation*}
d h / d x=j \tag{138}
\end{equation*}
$$

Then the integrand can be expressed as

$$
\begin{equation*}
\left[A h^{2}+3 h+C\right]^{1 / 2}=j\left[\left[x^{2}+i x+P\right]^{1 / 2}\right. \tag{139}
\end{equation*}
$$

The root on the left is to have a positive real part, so that the root on the right, above, must have a negative imapinary part. The integral then becomes

$$
\begin{align*}
\text { path } & \int_{\text {one }}\left[A h^{2}+B h+C\right]^{1 / 2} d h=\int_{C / B}^{0} j\left[1 x^{2}+M x+P\right]^{1 / 2} j d x \tag{140}\\
& =\int_{0}^{C_{1 / B}^{B}}\left[M x^{2}+i x+P\right]^{1 / 2} d x \tag{141}
\end{align*}
$$

It can be determined by differentiation that

$$
\begin{aligned}
& \int\left[1 x^{2}+i x+p\right]^{1 / 2} d x= \\
& {\left[\frac{2 i n+i j}{4 i n}\right]\left[i x^{2}+i x+p\right]^{1 / 2}} \\
& +\frac{4 \min ^{2}}{8 n^{3 / 2}} \operatorname{Lom}\left[2 n^{1 / 2}\left(2 x^{2}+i x+P\right)^{1 / 2}+2 i^{1 / x}+n\right] .
\end{aligned}
$$

In this analysis, Log will designate the logarithm to the base e of a complex number, while lof will indicate the logarithm to the base e of a real number.

At the upper limit of expression $141, \operatorname{lx}^{2}+\mathbb{I} x+\Gamma$ vanishes, by definition. The integral in Iquation 141 then becomes

$$
\begin{align*}
& \int_{0}^{C_{1 / B}}\left[M x^{2}+i x+P\right]^{1 / 2} d x=\left(\frac{4 i\left(P-11^{2}\right.}{8 m^{3 / 2}}\right) \log \left[\frac{2 M C_{1}}{i 3}+W\right] \\
& \left.-\frac{\operatorname{NP}^{1 / 2}}{4!}-\left(\frac{4 P P^{2}}{8 n^{3 / 2}}\right) \log \left[24^{1 / 2} 1 / 2+i\right]\right], \tag{143}
\end{align*}
$$

where $p^{1 / 2}$ must have a positive real part.

$$
\begin{equation*}
\left[j c_{1}\right]^{1 / 2}=c_{1}^{1 / 2}\left(\frac{-1}{\sqrt{2}}-j \frac{1}{\sqrt{2}}\right) \tag{144}
\end{equation*}
$$

If the logarithm functions are combined as the logarithm of a quotient, the numerator and denominator of the argument can be divided by N . The
integral can then be written as

$$
\begin{align*}
& \int_{0}^{C}\left[1 / 4 x^{2}+N x+P\right]^{1 / 2} d x=\left[\frac{4 M P-i I^{2}}{8 N^{3 / 2}}\right]\left\{\log \left[1+\frac{2 M C_{1}}{1 B}\right]\right. \\
& \left.-\log \left[\frac{2 M^{1 / 2} P^{1 / 2}}{N}+1\right]\right\}-\frac{\operatorname{NP}^{1 / 2}}{4!} \tag{145}\\
& -\frac{N P^{1 / 2}}{4!1}=-\frac{\mathrm{BC}_{1}^{1 / 2}}{42 A}+\frac{\mathrm{BC}_{1}^{1 / 2}}{42 A}+j \frac{\mathrm{C}_{0} \mathrm{C}_{1}{ }^{1 / 2}}{22 B}-\frac{\mathrm{C}_{0} \mathrm{C}_{1}{ }^{1 / 2}}{22 B}
\end{align*}
$$

Using Equations 137 ,

$$
\begin{align*}
\frac{4 P-N^{2}}{8 A^{3 / 2}} & =\frac{j^{4 A C_{1}}+B^{2}\left(1-\frac{4 A C_{o}}{B^{2}}\right)}{8 A^{3 / 2}} \\
& =j \frac{C_{1}}{2 A^{1 / 2}}+\frac{B^{2}}{8 A^{3 / 2}}-\frac{C_{0}}{2 A^{1 / 2}} \tag{147}
\end{align*}
$$

To evaluate the first logarithm in Equation 145 , write

$$
\frac{2 A C_{1}}{3 N}=j \frac{2 A C_{1}}{3^{2}}
$$

Now note that, if x and y take real values,

$$
\begin{array}{rlr}
\log [1+x+j y] & =\frac{1}{2} \log |1+x+j y|^{2} \\
& +j \arctan \frac{y}{1+x} & 149 \\
& =\frac{1}{2} \log \left[1+2 x+x^{2}+y^{2}\right]+j \operatorname{arc} \tan (y-y x), & 150
\end{array}
$$

where only two terms have been included in the argument of the arc tan
function. Therefore, it is true that

$$
\begin{equation*}
\log \left[1+\frac{2 M C_{1}}{I I B}\right]=\frac{1}{2} \log \left(1+\frac{4 A^{2} C_{1}^{2}}{B^{4}}\right)+j \arctan \frac{2 A C_{1}}{3^{2}} \tag{151}
\end{equation*}
$$

Using the series

$$
\log (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}+\ldots
$$

for $\mathrm{x}<1$, it is found that

$$
\begin{equation*}
\log \left(1+\frac{4 A^{2} C_{1}^{2}}{B^{4}}\right)=\frac{4 A^{2} C_{1}^{2}}{B^{4}}+\text { higher terms } \tag{153}
\end{equation*}
$$

It can be determined by investigating the orders of magnitude of the terms involved here that quantities involvine B to the fourth power, or higher, in the denominator, can be neglected. In addition, the arguments of the arc tan functions in this anpencix are generally less than 0.05 , so from the series

$$
\begin{equation*}
\tan x=x+\frac{x^{3}}{3}+\frac{2 x^{5}}{15}+\ldots \tag{154}
\end{equation*}
$$

it can be seen that arc $\tan \theta$ can be approximated by θ, with negligible error. Therefore one can write

$$
\begin{equation*}
\log \left[1+\frac{2 \mathrm{MC}_{1}}{\mathrm{NB}}\right]=j \frac{2 \mathrm{AC}_{1}}{\mathrm{~B}^{2}} . \tag{155}
\end{equation*}
$$

To evaluate the second logarithm in Equation 145 , use the relation

$$
\frac{2 \mathrm{~m}^{1 / 2} \mathrm{p}^{1 / 2}}{\mathrm{~N}}=-j \frac{\sqrt{2 \mathrm{AC}_{1}}}{\mathrm{~B}}-j \frac{2 \mathrm{AC}_{0} \sqrt{2 \mathrm{AC}_{1}}}{\mathrm{~s}^{3}}+\frac{\sqrt{2 \mathrm{AC}}}{1} 10 \mathrm{ACC}_{0} \sqrt{2 \mathrm{AC}_{1}} \mathrm{~B}^{3} \quad 156
$$

Using the relation 150 for the above expression, let

$$
\mathrm{x}=\frac{\sqrt{2 \mathrm{AC}_{1}}}{\mathrm{~B}}+\frac{2 \mathrm{AC}_{\mathrm{o}} \sqrt{2 \mathrm{AC}} 1}{\mathrm{E}^{3}}
$$

$$
x^{2}=\frac{2 \Lambda C_{1}}{3^{2}}
$$

$$
y=-\frac{\sqrt{2 A C}_{1}}{B}-\frac{2 A C_{0} \sqrt{2 A C_{1}}}{B^{3}}
$$

$$
y^{2}=x^{2}=-y x .
$$

The result is

$$
\begin{aligned}
& \log \left[1+\frac{2 \mathrm{M}^{1 / 2} 1 / 2}{\mathrm{~F}}\right]=\log \left(1+\frac{2 \sqrt{2 \mathrm{AC}} 1}{B}+\frac{4 \mathrm{AC}_{0} \sqrt{2 \mathrm{AC}_{1}}}{\mathrm{~B}^{3}}+\frac{4 \mathrm{AC}_{1}}{\mathrm{~B}^{2}}\right. \\
& +j\left(-\frac{\sqrt{2 \mathrm{AC}_{1}}}{\mathrm{~B}}-\frac{2 \mathrm{AC} \mathrm{C}_{0} \sqrt{2 \mathrm{AC}} 1}{\mathrm{~B}^{3}}+\frac{2 \mathrm{AC}_{1}}{\mathrm{~B}^{2}}\right)
\end{aligned}
$$

Equation 152 can be used to evaluate the log function, to yield

$$
\begin{align*}
& \log \left[1+\frac{2 \mathrm{M}^{1 / 2_{\mathrm{p}} 1 / 2}}{\mathrm{n}}\right]=\frac{\sqrt{2 A C_{1}}}{\mathrm{~B}}+\frac{2 \mathrm{AC}_{0} \sqrt{2 \Lambda \mathrm{C}_{1}}}{\mathrm{~B}^{3}}-\frac{3 \mathrm{AC}_{1} \sqrt{2 \mathrm{AC}_{1}}}{2 \mathrm{~B}^{3}} \\
& +j\left(-\frac{\sqrt{2 A C_{1}}}{3}-\frac{2 A C_{0} \sqrt{2 A C_{1}}}{B^{3}}+\frac{2 \mathrm{AC}_{1}}{\mathrm{~B}^{2}}\right) \tag{159}
\end{align*}
$$

now define Δ by

$$
\begin{equation*}
\Delta=\log \left[1+\frac{2 M C_{1}}{B N}\right]-\log \left[1+\frac{2 M^{1 / 2} 1 / 2}{I}\right] \tag{160}
\end{equation*}
$$

Combining Equations 159 and 155 gives

$$
\begin{align*}
& \Delta=-\frac{\sqrt{2 A_{1}}}{B}-\frac{2 \Lambda C_{o} \sqrt{2 \mathrm{AC}_{1}}}{\dot{E}^{3}}+\frac{3 \mathrm{AC}_{1} \sqrt{2 \mathrm{AC}}{ }_{1}}{25^{3}} \\
& +j \frac{\sqrt{2 \mathrm{AC}_{1}}}{\bar{B}}+j \frac{2 \mathrm{AC}_{o} \sqrt{2 \mathrm{AC}}}{1}{ }_{B^{3}} \tag{161}\\
& {\left[\frac{4 \mathrm{PP}-\mathrm{A}^{2}}{8 \mathrm{M}^{3 / 2}}\right] \Delta=\left(j \frac{C_{I}}{2 A^{1 / 2}}-\frac{C_{0}}{2 A^{1 / 2}}\right)\left(-\frac{\sqrt{2 A C_{1}}}{B}+j \frac{\sqrt{2 A C_{1}}}{3}\right)} \\
& +\frac{B^{2}}{8 A^{3 / 2}}\left(-\frac{\sqrt{2 A C_{1}}}{B}-\frac{2 A C_{0} \sqrt{2 A C_{1}}}{B^{3}}+\frac{3 A C_{1} \sqrt{2 A C_{1}}}{2 B^{3}}+\frac{\sqrt{2 \Lambda C_{1}}}{B} .\right. \\
& \left.+j \frac{2 A_{o} \sqrt{2 A C}}{B^{3}}\right) \quad 162
\end{align*}
$$

In the above relation, the smaller terms have been deleted from Δ in the first product. Combining Equations 162 and 146 in 145 , all but two terms cancel to give

$$
\begin{equation*}
\underset{\text { one }}{\operatorname{path}} \int\left[\mathrm{Ar}^{2}+\mathrm{Bh}+\mathrm{C}\right]^{1 / 2} \mathrm{dh}=-\mathrm{C}_{1}^{3 / 2} \frac{5 \mathrm{C}_{1}^{3 / 2}}{\sqrt{2 B}}-\frac{8 \sqrt{2} \mathrm{~B}}{8} . \tag{163}
\end{equation*}
$$

The integration along the real axis (path two) can be accomplished in the same manner. Using expression 142 , one obtains

$$
\begin{aligned}
& \int_{-C}^{h}\left[A h^{2}+B h+C\right]^{1 / 2} d h=\left[\frac{2 A h+B}{4 A}\right]\left[A h^{2}+B h+C\right]^{1 / 2} \\
& \frac{0}{B} \\
& +\left(\frac{4 A C-B^{2}}{8 A^{3 / 2}}\right) L 0 r \cdot\left[\frac{2 A^{1 / 2}\left(A h^{2}+B h+C\right)^{1 / 2}+2 A h+B}{2 A^{1 / 2}\left(-j C_{1}\right)^{1 / 2}-\frac{2 A C}{B}+3}\right] \\
& -\frac{1}{B}\left(1-\frac{2 A C}{E^{2}}\right)\left(-j C_{1}\right)^{1 / 2} \\
& 4 \Lambda
\end{aligned} .
$$

This functior will now be evaluated for $h=0$.

$$
\begin{aligned}
& \int_{-C}^{0}\left[4 h^{2}+3 h+C\right]^{1 / 2} d h=\frac{3 C^{1 / 2}}{4 A}-\frac{B\left(1-\frac{2 A C}{O}\right)\left(-j C_{1}\right)^{1 / 2}}{4 A} \\
& \frac{0}{3}^{-} \\
& +\left(\frac{4 A C-B^{2}}{8 A^{3 / 2}}\right) \operatorname{LoF}\left[\frac{2 A^{1 / 2} C^{1 / 2}}{3}+1\right]-\left(\frac{4 A C-B^{2}}{8 A^{3 / 2}}\right) \operatorname{Lor}\left[1-\frac{2 A C C_{0}}{B^{2}}+\frac{2 A^{1 / 2}}{3}\right. \\
& \left.\left(-\mathrm{jC}_{1}\right)^{1 / 2}\right]
\end{aligned}
$$

Since $\left[A h^{2}+3 h+C\right]^{1 / 2}$ is to have a pcsitive real part, $C^{1 / 2}$ should also have a positive real part wherever it appears in lquation 165 . This root of C can be expressed as

$$
\begin{equation*}
C^{1 / 2}=D\left(\cos \frac{\psi}{2}-j \sin \frac{\psi}{2}\right) \tag{166}
\end{equation*}
$$

where D is defined by Lquation 98 and ψ is defined by

$$
\begin{equation*}
\psi=\arctan \frac{-C_{1}}{C_{0}} \tag{167}
\end{equation*}
$$

Therefore

$$
\begin{align*}
& \frac{B C^{1 / 2}}{4 A}=\frac{3 D \cos \frac{\psi}{2}}{4 A}-\frac{3 D \sin \frac{\psi}{2}}{4 A} \tag{168}\\
& -\frac{3}{4 A}\left(1-\frac{2 A C_{o}}{3^{2}}\right)\left(-i C_{1}\right)^{1 / 2}=\frac{-B\left(1-\frac{2 \Lambda C_{o}}{4 A}\right) C_{1}^{1 / 2}\left(\frac{1}{\sqrt{2}}-\frac{j}{\sqrt{2}}\right)}{\sqrt{2}} \\
& =\frac{-3 C_{1}^{1 / 2}}{4 \sqrt{2} A}+j{\frac{B C_{1}}{1 / 2}}_{4 \sqrt{2} A}^{C_{A}}+\frac{C_{0} C_{1}^{1 / 2}}{2 \sqrt{2}}{ }_{B}-j \frac{C_{0} C_{1}^{1 / 2}}{2 \sqrt{2} 3} \tag{169}
\end{align*}
$$

To evaluate the first logarithm, write

$$
\frac{2 A^{1 / 2} C^{1 / 2}}{B}=\frac{2 A^{1 / 2} D \cos \frac{\psi}{2}}{5}-j \frac{2 A^{1 / 2} D \sin \frac{\psi}{2}}{5}
$$

Substitute this into the form 150 to get

$$
\begin{aligned}
& \log \left[1+\frac{2 A^{1 / 2} C^{1 / 2}}{B}\right]=\frac{1}{2} \log \left(1+\frac{4 A^{1 / 2} D \cos \frac{\psi}{2}}{3}+\frac{4 A D^{2}}{B^{2}}\right) \\
& +j\left(-\frac{2 A^{1 / 2} D \sin \frac{\psi}{2}}{3}+\frac{4 A D^{2}}{B^{2}} \sin \frac{\psi}{2} \cos \frac{\psi}{2}\right),
\end{aligned}
$$

where

$$
\begin{aligned}
& 10 \pi\left(1+\frac{4 A^{1 / 2} D \cos \frac{\psi}{2}}{B}+\frac{4 A D^{2}}{3^{2}}\right)=\frac{4 A^{1 / 2} D \cos \frac{\psi}{2}}{3}+\frac{4 A D^{2}}{B^{2}} \\
& -\frac{8 A)^{2} \cos ^{2} \frac{\psi}{2}}{B^{2}}-\frac{16 A^{3 / 2} D^{3} \cos }{3^{3}}{ }^{\frac{\psi}{2}}+\frac{64}{3} \frac{A^{3 / 2} D^{3} \cos ^{3} \frac{\psi}{2}}{B^{3}} .
\end{aligned}
$$

[^0]\[

$$
\begin{aligned}
& \log \left[1-\frac{2 A C}{B_{0}} 3^{2}+\frac{\sqrt{2 A C}_{1}}{B}-j \frac{\sqrt{2 A C}_{1}}{B}\right]=\frac{1}{2} \log \left(1-\frac{4 A C_{0}}{B^{2}}\right. \\
& \left.+\frac{2 \sqrt{2 A C_{1}}}{\mathrm{~B}}+\frac{4 \mathrm{AC}_{1}}{\mathrm{~B}^{2}}-\frac{4 \mathrm{AC}-\sqrt{2 \mathrm{AC}_{1}}}{\mathrm{~B}^{3}}\right) \\
& +j\left(-\frac{\sqrt{2 A C}_{1}}{B}-\frac{2 \mathrm{AC}_{0} \sqrt{2 \mathrm{AC}}}{1} \mathrm{~B}^{3}+\frac{2 \mathrm{AC}_{1}}{\mathrm{~B}^{2}}-\frac{2 \mathrm{AC}_{1} \sqrt{2 \mathrm{AC}_{1}}}{\mathrm{~B}^{3}}\right) \\
& =\frac{1}{2}\left(\frac{-4 \mathrm{AC}_{0}}{\mathrm{~B}^{2}}+\frac{2 \sqrt{2 \mathrm{AC}} 1}{3}+\frac{4 \mathrm{AC}_{0} \sqrt{2 \mathrm{AC}_{1}}}{\mathrm{~B}^{3}}-\frac{3 \mathrm{AC}_{1} \sqrt{2 \mathrm{AC}_{1}}}{3^{3}}\right) \\
& +i\left(-\frac{\sqrt{2 A C}_{1}}{\mathrm{~B}}-\frac{2 \mathrm{AC}_{o} \sqrt{2 \mathrm{AC}}{ }_{1}}{\mathrm{~B}^{3}}+\frac{2 \mathrm{AC}_{1}}{\mathrm{~B}^{2}}-\frac{2 \mathrm{AC}_{1} \sqrt{2 \mathrm{AC}_{1}}}{\mathrm{~B}^{3}}\right)
\end{aligned}
$$
\]

Now note that

$$
\begin{equation*}
\frac{4 \mathrm{AC}-3^{2}}{8 A^{3 / 2}}=\frac{C_{0}}{2 A^{1 / 2}}-j \frac{C_{1}}{2 A^{1 / 2}}-\frac{B^{2}}{8 A^{3 / 2}} \tag{175}
\end{equation*}
$$

Substituting Equations 168 , $169,171,174$, and 175 in the Equation 165 yields

$$
\begin{aligned}
& \underset{\text { path }}{\text { two }} \int\left[A h^{2}+B h+C\right]^{1 / 2} d h=j\left[\frac{C_{1}}{4 \Lambda^{1 / 2}}+\frac{C_{1}^{3 / 2}}{2 \sqrt{2} B}-\frac{D^{2} \sin \frac{\psi}{2} \cos \frac{\psi}{2}}{2 A^{1 / 2}}\right. \\
&-\left.\frac{C_{1} D \cos \frac{\psi}{2}}{B}-\frac{C_{0} D \sin }{B} \frac{\psi}{2}\right]+\left[\frac{D^{2} \cos ^{2} \frac{\psi}{2}}{2 A^{1 / 2}}-\frac{D^{2}}{4 A^{1 / 2}}+\frac{D^{3} \cos }{B} \frac{\psi}{2}\right. \\
&\left.-\frac{4 D^{3} \cos ^{3} \frac{\psi}{2}}{3 B}-\frac{C_{0}}{4 A^{I / 2}}+\frac{5 C_{1}^{3 / 2}}{8 \sqrt{2} B}+\frac{C_{0} D \cos \frac{\psi}{2}}{B}-\frac{C_{1} D \sin \frac{\psi}{2}}{B}\right] .
\end{aligned}
$$

XIII. APPEidDIX D

Friedman (12) has obtained, by a series of approximations and a single real integration, the relation

$$
\nu_{s}=k_{o} a+\frac{1}{2}\left(k_{o} n\right)^{1 / 3}\left(3 \tau_{s}\right)^{2 / 3} e^{j \pi / 3}
$$177

The corresponding relation for β then becomes

$$
\begin{equation*}
\beta_{s}=\frac{\sqrt{3}}{4}\left(k_{0} a\right)^{1 / 3}\left(3 \tau_{s}\right)^{2 / 3} \tag{178}
\end{equation*}
$$

This compares with the results of the present work if Λ is set equal to zero before the integration is performed.

$$
\begin{equation*}
\int[B h+C]^{1 / 2} d h=\frac{2}{3 B}[B h+C]^{3 / 2} \tag{179}
\end{equation*}
$$

Along path one, let

$$
\begin{equation*}
h=\frac{-C_{0}}{\mathrm{I}}+j x \tag{180}
\end{equation*}
$$

so that

$$
\begin{equation*}
\frac{d h}{d x}=j \tag{181}
\end{equation*}
$$

Then

$$
\begin{align*}
& \begin{array}{l}
\text { path } \\
\text { one }
\end{array}\left[[\mathrm{Ph}+\mathrm{C}]^{1 / 2} d h=j \int_{C_{1 / B}}^{0}\left[j B x-j C_{1}\right]^{1 / 2} d x\right. \\
& \left.=\frac{2}{3 B}\left[j i \dot{x}-j C_{1}\right]^{3 / 2} \right\rvert\, \begin{array}{l}
0 \\
C_{1 / 3}
\end{array} \\
& =\frac{2}{3 B}\left[-j C_{1}\right]^{3 / 2} \tag{182}
\end{align*}
$$

Integration along the real axis gives the result

$$
\int_{-\frac{0}{B}}^{0}[3 h+C]^{1 / 2} d h=\frac{2}{3 B}\left[c^{3 / 2}-\left(-j C_{1}\right)^{3 / 2}\right]
$$

$$
183
$$

Combining Equations 182 and 183 yields the eigenvalue equation

$$
\begin{equation*}
\frac{2}{3 B} c^{3 / 2}=\frac{-\tau}{k} \tag{184}
\end{equation*}
$$

In order that $c^{3 / 2}$ be real, one must reauire that

$$
\begin{equation*}
\psi=\frac{2 \pi}{3} \tag{185}
\end{equation*}
$$

and

$$
\begin{equation*}
-C_{0}=\frac{C_{1}}{2} . \tag{186}
\end{equation*}
$$

Then

$$
\begin{equation*}
|\bar{C}|=\frac{5}{2} c_{]} . \tag{187}
\end{equation*}
$$

From Equation 184

$$
\begin{equation*}
|c|=\left(\frac{3 B v_{s}}{2 k_{0}}\right)^{2 / 3} \tag{108}
\end{equation*}
$$

so

$$
\begin{equation*}
C_{1}=\frac{2}{5}\left(\frac{3 B \tau}{2 k_{0}}\right)^{2 / 3} \tag{189}
\end{equation*}
$$

For the free space atmosnhere,

$$
\begin{equation*}
B=\frac{2}{a} \tag{190}
\end{equation*}
$$

so

$$
\begin{equation*}
C_{1}=\frac{2}{5}\left(\frac{3 \tau_{s}}{k_{0}^{a}}\right)^{2 / 3}=\frac{2 B}{k_{0}^{a}} \tag{101}
\end{equation*}
$$

The final result is

$$
\begin{equation*}
\beta=\frac{1}{5}\left(k_{0} a\right)^{1 / 3}\left(3 \tau_{s}\right)^{2 / 3} \tag{192}
\end{equation*}
$$

In comparin Equations 192 and 178 , it seems that Friedman's result is equivalent to using a two term expansion for $Y(h)$ in the height rain differential equation, instead of the three term expansion used in this analysis. The solution for the heirht gain function in the case of a linear function $Y(h)$ can be obtained ricorously, without recourse to the Lanfer asymototic method, by making a chanee of variable to put the differential equation into the form of Stokes equation. The solution then takes the form of the Airy integral, as discussed by Budden (7) and others.

[^0]: Second logarithm becomes

