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I. INTRODUCTION 

The study of the propagation of electromagnetic waves over the sur­

face of the earth has long commanded a great deal of interest because of 

the mathematical tehniques involved and because of the obvious practical 

significance of the problem. The history of this study can be traced to 

the modal representation presented by Lord Rayleigh (29) for sound waves 

emanating from a point source beside a large spherical boundary. In this 

representation, each mode took the form of a Bessel function of large 

order, 

G. N. Watson (36) adapted the Rayleigh solution for electromagnetic 

propagation, and transformed the resulting series to an alternate form 

which converged rapidly enough to permit numerical evaluation, van der 

Pol and Bremmer (33) extended the Watson residue series to accomodate an 

arbitrary conductivity of the earth and an arbitrary dielectric constant. 

The model here involved a homogeneous atmosphere. 

Schelleng, Burrows, and Ferrell (3l) then proposed a model in which 

tropospheric refraction would be taken into account by using an effective 

radius of the earth equal to about h/3 the actual value, thus extending 

the effective radio horizon. The validity of this general approach and 

the "classical earth radius" theory was assumed for some time. 

A more critical study of the entire problem was stimulated by the 

publication of reliable experimental field strength measurements, such as 

those by Megaw (22), and Gerks (15)» which indicated that fields beyond 

the radio horizon were commonly much stronger than the classical values. 

Three separate hypotheses were advanced to explain this discrepancy. The 

"turbulent scatterer" theory was advanced by Booker and Gordon (2), who 
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argued that local, time-varying anomalies in the refractive index effec­

tively scatter energy beyond the horizon. Bullington (8) formulated the 

scattering of radiation due to the roughness of the surface of the earth, 

and obtained field strengths greater than the classical values. 

A third group of investigators made a more critical study of the 

original mode theory in an attempt to bring together experimental and 

theoretical results. A brief history of this effort is desirable, since 

the classical mode theory forms the basis for this report. 

Pekeris and Ament (27) completed the normal mode solution in cylin­

drical coordinates for several profiles of refractive index, Kerr (19) 

has collected several analyses, also concerning the flat earth, which 

were stimulated primarily by military work with radar. Eremmer (5) pre­

sents an exhaustive review of the classical results in spherical coordi­

nates, including a physical interpretation of ray tracing and the 

Wentzel-Brillouin-Kramers method (lO). 

Wait (3^) carefully analyzed the hypothesis of the homogeneous earth 

and concluded that such a model was justified. Ghose and Albright (l6) 

studied the normal modes for a choice of smooth profile which yielded a 

height gain equation that could be solved exactly. Experimental data 

quoted by Ghose and Albright has been compared with the results of the 

present study, with good agreement. 

Carroll and Ring (9) showed, in an exhaustive treatment, that for 

several particular profiles, higher order modes could make a significant 

contribution to the field strength. Bremmer (3) has studied the mode 

expansion for smooth profiles ajid obtained field strengths smaller than 

those of Carroll and Ring. 
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Budden (6,7) has reviewed the standard mode theory with particular 

emphasis on ionospheric propagation. Included is a treatment of Stoke's 

equation and the Airy integral solution. Post (28) has used earth-

flattened coordinates and a Green's function technique to allow the normal 

mode solution to accomodate an arbitrary profile. Some numerical data 

from Post has been included in this report to allow comparison of results. 

Gerks (l4) has reviewed the entire mode solution as it applies to a 

spherical earth and a stratified atmosphere. Wait (35) has discussed the 

most recent work with the normal mode theory and low frequency applications. 

The attempt to find solutions for a general class of height gain dif­

ferential equations was begun by Furry (13), who applied the well-known 

W.K.B. solution to a bilinear profile. Pekeris (26) derived an asymptotic 

solution by means of a power series expansion. Langer (20), motivated by 

Pekeris'work, showed that the results of one of his earlier papers (2l) 

could be applied to the problem of microwave propagation, but did not 

complete any quantitive check on the solution. 

Friedman (12) has made extensive use of the Langer solution in formu­

lating the mode solution for a general stratified atmosphere. He obtains, 

for any smooth, monotonically decreasing profile, an expression for the 

eigenvalues which leaves them essentially unchanged from the homogeneous 

atmosphere values. Horthover (23) has obtained the same qualitative re­

sult by a different method. Bremmer (4) has studied the dependence of 

the Langer solution on the complex root h^. 

This analysis draws freely on the classical mode solution as written 

by Friedman. A particular smooth profile, approximating an exponential 

profile, is specified by a three term power series, or quadratic. The 
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proper integration is performed to generate the Langer solution for this 

profile, and the transcendental equations defining the eigenvalues are 

obtained. Numerical examples are presented to compare the results with 

those of Friedman and Post. The Friedman expression of the free space 

eigenvalues is obtained as a special case of the present solution. 
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II. FORîCFLATION OF THE PROB&EM AIID THE GENERALIZED SOLUTION 

This analysis deals with the electromagnetic fields produced by an 

elemental monochromatic magnetic dipole vertically oriented above a homo­

geneous conducting sphere. Of particular interest is the case in vhich 

the radius of the sphere is very large compared to the free space wave­

length, and in which the dielectric medium surrounding the sphere is 

described by a refractive index that is given a specified functional 

dependence on the radial coordinate. 

For the purposes of this analysis, a point magnetic dipole of strength 

m is defined as a planar loop of radius R, carrying current I, in the 

limiting case as R becomes arbitrarily small such that m = lim RI. This 
R-KD 
I-X» 

source is somewhat analogous to a horizontally oriented antenna in that 

the polarization of the resulting electric field is the same. 

The problem is presented in ordinary spherical coordinates r, 0, and 

(j), as depicted in Figure 1. The dipole is radially oriented and located 

at r = b on the axis defined by 0 = 0. The radius of the sphere will be 

given by a. This geometric configuration is obviously an appropriate 

idealized model with which to study the propagation of electromagnetic 

energy around the earth at high frequencies. 

The choice of the magnetic dipole source as opposed to the electric 

dipole is made because the resulting boundary conditions are considerably 

simpler. This choice is further justified by the fact that experimental 

evidence indicates the field strengths in the diffraction region, or 

beyond the radio horizon, to be relatively independent of the polariza­

tion of the source (9). The frequency range for which the model is 
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Figure 1. The spherical coordinates of the problem 



www.manaraa.com

accurate will have a lower "bound due to the lack of consideration of the 

ionosphere. Field strengths calculated on the basis of a perfectly con­

ducting earth will be valid for those frequencies at which the earth 

appears to be a very good conductor. 

It will be instructive to review the classical construction of solu­

tions to Maxwell's equations in terms of a magnetic vector potential A 

and an electric potential F. The notation here will be that due to 

Harrington (17). The electric field intensity E and the magnetic field 

intensity H must satisfy Maxwell's equations for a source-free region, 

except at the source point. 

V X E = jojyK V'll = 0 
_ 1 

V X H = -jcoeE V«E = 0 

The time dependence of e has been removed, so that real time expres­

sions can be obtained for these field intensities by taking the real part 

of the products Ee and He 

It is customary to relate potentials to intensities by requiring 

that 

ET = -VxF 2 

when only magnetic sources are present, and 

if = VxX 3 

when only electric sources are present. In the case of both sources, the 

fields due to each source are superimposed to yield the relations 

VxVxA 
—JL 
E = i 

-VxF + — 
WE 

H = VxA + — \ 
CJY 

The potentials A and F are still arbitrary to the extent that a particular 
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"gauge" transformation can be made. For one such choice, the potentials 

satisfy the wave equations 

2-' 2-^ V A + k A = 0 

5 

,2y+ k^F . 0 , 

where k is the wave number defined by 

, 2 2  ^  k = w WE . 6 

It is possible to represent, by means of the potentials A and F, an 

arbitrary electromagnetic field as the superposition of a magnetic field 

transverse to the radius vector, (T.M), and an electric field transverse 

to (TE). For this purpose it will be required that 

A = A e 
r r 

F = F e 
r r 

where e^ is a unit vector in the radial direction. Equations 5 require 

that the rectangular components of A and F satisfy the scalar Helmholtz 

wave equation. By substitution into these same equations, it can be de-
A F 

termined that the functions — and — also satisfy the Helmholtz equation, 

[V^ + k^]^ =0 8 

2 2 ^r [V + k = 0 . 9 

At this point it is appropriate to recognize that the potential vec­

tor F is essentially identical to the radial "Hertz" vector used exten­

sively by Friedman (12), and Bremmer (5), and it is also equivalent to 

the "magnetic potential" discussed by Panofsky and Phillips (25). It 

is known that an arbitrary field can be constructed from the TE and TOl 

modes which are generated from the racial vectors F and A, since these 
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modes form a complete set (IT). It is veil established from the vork of 

Bremmer (5) and Friedman (12), however, that for the particular problem 

outlined here, involving a radial dipole and radially stratified index of 

refraction, the fields can be generated from a single radial potential F. 

This assertion need not be proven before-hand, since the uniqueness 

theorem, as given by Harrington (IT)» provides assurance that a solution 

obtained from a single potential, radially oriented, will be the only one 

possible. 

To proceed with the classical solution, one writes the operator 

[V^ + k^] in spherical coordinates and uses the method of separation of 

variables to solve Equation 9 • Since by symmetry there is no 4" depend­

ence, let 

F _ 
^ = 0(0) R(r) . 10 

The separated equations which result are 

r r 

^ ^ (sine if) + [v(v+l)]0 = 0 . 12 
sin6 d6 d6' 

The separation constant is given by v(v+l). The requirement that'G be 

defined for all 0 on the closed interval [0,n] requires that v be a posi­

tive integer. The solution for 0 is then 

0(8) = P (cosO) 13 

where P(x) is the well known Legendre function. In the case of a homo­

geneous medium, the solutions for R are the well known spherical Bessel 

functions 
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\ = Jû; . Ik 

where B(kr) is an ordinary Bessel function. 

The solution for F then "becomes 
r 

F = Z C r R P (cosO) 15 
r V V V 

V 
where C is a constant. 

V 

It is helpful to define the function "by 

A 
The differential equation which must satisfy is 

i. -n? -
dr^ r^ 

zL = 0 17 

In the special case of the homogeneous medium, the functions B^ are, apart 

from a multiplicative constant, the spherical Bessel functions due to 

Schelkunoff (30). 

A 
Inside the homogeneous earth, the choice for B^ is that Schelkunoff 

function which is regular at r = 0, so that 

" 1/2 

The complex wave number k^ characterizes the permittivity and conductivity 

of the earth. Thus, for r < a, F^ is given by 

= Z rl/%^l/2(kir) p^(oose) 19 
V 

From Equation 2 , the electric field intensity can be obtained from 

F by the relations 

E = E„ = 0 20 
r 0 
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To form the series for F valid for r > a, one must take into account the 
r 

dipole source and the dependence of k on r. Friedman's form of the solu­

tion will he used because the series for F can be completed in terms of 
r 

generalized functions without specifying the exact "profile", or depend­

ence of i on r. Panofsky and Phillips (25) have shown that the potential 

F satisfies a wave equation similar to 5 , but with the magnetization 

vector wym as a source, where is the permeability of the medium. The 

scalar wave equation for F^ then becomes 

[v2 + kZ] fr = -JwWo6(r-b)5(8) 22 

^ 2iTr sin9 

2 
where 6 designates the Dirac delta function and the factor 2irr sin0 

normalizes the dipole moment to unit strength. 

Next, a series for F is assumed in the form 
' r 

F^ = Z B^(r) P^(cos0) 23 
V 

Using this representation in Equation 22 , one can multiply both sides 

of the equation by P^(cos6) sin0 d0 and integrate from 0 to TT. The result 

is the following equation: 

(B) * [k2(r) -
dr r 

Friedman has constructed, by the method of variation of parameters, the 

solution to this equation in terms of solutions to the homogeneous Equa­

tion IT . The solutions to the "height gain" Equation IT are known to 

behave approximately like Bessel functions, but the exact behavior depends 

on the profile. In any case, one of the linearly independent solutions, 

to be designated as f^, can be expected to be asymptotic to e*^^o^ for 
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"ik 
lareie r. The second, will be asymptotic to e o for large r. Here, 

is the free space wave nimber. Let g designate some linear combination 

of the solutions f^ and f^. Then the solution to Equation 2h has been 

shown by Friedman to take the forms 

jwMgg(r)f^(b) 
® W 25 

/\ jojp g(b)f (r) 
= = 2.r H '  ̂

where \> is the Wronskian of the two solutions. 

% ' I; - % 37̂  

Friedman has shown that the Wronskian is independent of r for the magnetic 

dipole problem. U will be written as H(v) to emphasize the dependence 

on the parameter v. The series for F then become 
r 

jw;_ pu+1 §(r)f (b) 
pje.se) 28 

V r W ( V ) 

for a < r < b, and 

V r W(v) 

for r > b. 

The above series converge so slowly that numerical evaluation, even 

by means of a digital computer, is not feasible. The Watson transforma­

tion, reviewed in Appendix A, is commonly applied to these series. The 

well known result is 

(v + ^)g('b)f, (r) (-cose)jcop 

"r = : ; «.(v,) (si..:;) 30 

for r > b. Here VJ'Cv^) is defined by 
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= [It = V 31 
S 

and the numbers are defined by 

W(Vg) = 0 . 32 

Note that is now complex, since the above series results from 

integration on the complex v plane. The approximation is commonly made 

that 

P (-cosO) 2. 

sin TTV^ ~^7r(v^+l) sinG^ exp[.i(v^+ -)e] 33 

From physical considerations, must have a positive imaginary part to 

give modes which decay with increasing 0. Only those eigenvalues, , 

with small imaginary part need be considered for the diffraction, or beyond-

the-horizon zone, since other v^'s correspond to highly attenuated modes. 

The functions f and F are both dependent on the eigenvalue v . 
s 

The series representation for E can now be formed usinr Equations 
9 

30, 33, and 21, The exponential dependence on 0 dominates the derivative, 

so that 

g(h)fi(r) 2 1/2 

' - 'vji)  Sine' -IMvva'el  

for r > b. (3i+) 

It should be noted that multiplication of the functions g and f by 

non zero constants will still allow them to satisfy Equation 17. In 

addition, the above series will be unchanged by such scaling factors, due 

to the function W'(v^). 
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To insure the continuity of tangential components of E and H at the 
dF 

surface r=a, one must require the continuity of F^ and at r=a. 

The eigenvalues in Equation 3^ must be identical with those in Equation 

19, since the 0 dependence of must be the same above and below the 

surface r=a. Equation 30 , with the arguments of f and g interchanged, 

forms the function F^ for a < r < b. The boundary condition on r(r) then 

becomes 

g 
dr 
g 

r=a 

35 

r=a 

The series for F involves values of v for which the Wronskian 
r 

vanishes. V/hen this occurs, the functions f^ and R are identical, except 

possibly for some multiplicative constant. The function g can then be 

replaced by f in Equation 35 . It is also customary to use the asymptotic 

or large argument approximation for give the final form 

for the boundary or eigenvalue equation as 

df 

a 

1/2 
36 

r=a 

For the special case in which the conductivity of the earth tends to 

infinity, the wave number becomes unbounded, and the eigenvalues are 

those which allow f to satisfy 

f^(a) = 0 . 37 
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III. SPECIFICATION OF THE PROFILE 

The dependence of e on r will now be specified. An exponential 

dependence of refractive index on height above the surface of the earth 

has been frequently suggested as characterizing a stable, uniform atmos­

phere (l,llt). This can be written as 

n = 1 + (n^-l)e~'^^ 38 

where n is the index of refraction, n^ is the surface index, c is a con­

stant parameter, and h is the height defined by 

r = h + a . 39 

It is then true that 

n^ = 1 + 2(nQ-l)e"C^ + (n^-l)^e"^^^ . hO 

Since (n -l) takes on values on the order of 10~^, the second exponential 
o ' -

can be neglected. Equation 17 then becomes, in terms of the independent 

variable h, 

4̂ . _l,e-ch . = 0 1.1 
dh^ o o (h+a)2 

How define Y(h) by writing the above equation as 

g/X 

^ + Y(h)B = 0 1+2 
dh 

No rigorous, exact solution has been found for Y(h) as written above 

(l4). The Langer asymptotic solution, whose derivation is outlined in 

Appendix 3, is felt to be the best possible approximate solution (23) and 

has been used in attempts to draw general conclusions about wide classes 

of index profiles (12,23). 
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To complete the Langer solution, Y(h) must be a function of h whose 

square root can be integrated without undue difficulty. A quadratic func­

tion of h meets this requirement, and can be obtained by generating a 

three term power series for e and for —-—— . The quadratic form of 
(h+a) 

O 
Y(h) which results can be used for h on the interval [0], while Y(h) 

assumes its free space form for h > 3/c. The surface h = 3/c is then a 

boundary between the troposphere and free space. If Y(h) and are 

3 made continuous at h = —, the boundary there will be a fictitious one and 

no reflected wave from this boundary need be considered. The procedure 

outlined here will now be developed in detail. 

•"Ch 2 
The function e is approximated by 1 + + 3h . vHien one requires 

this quadratic to have a zero value and a zero derivative at h = 3/c, A 

and B become 

I = - H3 

3 = c^Vg . hh 

The function can be expanded in a power series as 
(h+a) 

Therefore, for 0 < h < 3/c, 

Y(h) = YUTf h6 

where 
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Y(h) = k 2 + 2k ^(n -l) -
O O O d 

s. 

+ h[- kT 
a 

. .=[§ c\/, VI) - . 

So one can write 

Y(h) = k^[Ah^ + Bh + C] 1*8 

where 

A = I =2(n^-l) - 4, 
K a 
o 

B = ̂  - I c(n„-l) 
K. 8, O 

Y(h) = k^ - = Y (h) 
° (a+h)2 o 

50 

C = 1 + 2(n^-l) - v(v+l^ . 51 

k a 
o 

Y(h), for h > 3/c, is piven by 

52 

O 
Y(h) is thus discontinuous at h = —by a small amount eoual to the error 

c 

in the three term expansion for ^ ^ a t  h  =  3 / c .  S i n c e  t h i s  e r r o r  i s  
( a+h ) 

more than three orders of magnitude smaller than the constant C in Y(h), 

it will be neglected, ajid these functions Y^fh) and Y(h) will be assumed 

continuous. The first derivatives are likewise essentially continuous. 

It will then be true that the Taylor Series expansion for Y^(h) about 

h = 3/c and the series for Y(h) about h = 3/c will have identical first 

and second terms. The solutions to 
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4-â+ Y (h) B = 0 
dh 

and 

dh 

are therefore identical, except perhaps for a constant multiplier, 

on some interval including h = 3/c. 
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IV. THE HEIGHT GAIK FUKCTIOH 

The Langer solutions for the differential equation 

^ + k ^(q(h)) B =0 55 
dh 

take the form 

1 /P 

1/2 
^•2 = • '•f 

Q(h) and h^ are defined by 

Q(h) = k (q(h))l/2 58 

and 

q(h^) = 0 , 59 

and u(h) is given by 

u(h) = r k q(h)^^^dh 60 

^1 

In using the Langer solution, one adjusts the parameter v after the 

solution is formulated. The dependence of q on v can be seen by comparing 

Equations 55 and 17 . The particular values of v which satisfy the 

boundary conditions imposed are the values v^. For the Langer solution 

to be valid, it must be true that for each v^, k^|y'(h^)| exceeds some 

large constant. In addition, it must be possible to extend the definition 

of q(h) to complex values of h on some region including the points h^ 

mentioned above. Such an extension is not difficult for the case studied 

here, and the condition on y'(h) is satisfied for smooth, monotonically 
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decreasing profiles. 

Under the above hypotheses, q(h) has a root whose real part is posi­

tive and bounded from zero when h is real and positive. It is understood 

that this root is used in Equations $8 and 60 . The path of integra­

tion extends from h^ to some point on the real axis and then along the 

real axis to h. The real part of u is then em increasing function of h. 

The Langer solutions for Equation 5^ will be developed. The func­

tion f^ appearing in Equations 30 and 3^ will be given by 

1/2 
Hj/3'"tu(h)] 61 

for 0 < h < 3/c, and by 

1/3 c H , Jl'Ur) 62 
v+1/2 ^ o 

for h > 3/c. 

The constants A, 3, and C will now be evaluated for complex values 

of V. It is known from previous work (l4) that the real part of v will 

be approximately equal to k^a. Since |v| is large compared to unity, 

v(v+l)^ 63 

The real variables a and B will be defined by 

V = k^a + a + . 64 

Then the following relations can be written, keeping only the dominant 

terms: 

= (k a)^ + 2k aa + 2jBk a 65 
o o o 

1 
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= =  v^ ' -  IT -
o o 

B = £ . + jiL- 67 
^ 3 k a^ 

o 

A = I" c^(n -1) - -^ - . 68 
^ a k 

o 

By consideration of the typical values of c, n^ and k^, and anticipated 

values of 3, it is found that 

and 

S 70 

A and B will therefore be taken as real parameters describing the tropo­

sphere. The relations 

=0 = ='v^' - IT 71 
o 

and 

<=1=1^ 72  
o 

will arbitrarily define the real variables and C^. This will require 

that 

C = Co - jC^ 73 

2 
The root of Ah + Bh + C closest to the origin will now be found. 

, _ -B + (3^ - kAC)^/2 
^1 = 2Â 

Tit 

Substituting for C under the radical yields 
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ilAC ilAC, 1/2 hAC „ i+AC^ „ 1/4 kAC^ 
a [d --^r  * i~n  d + .i—h 

B B B B 2B 
75 

J 

Now make use of the relation that, for small e, 

[1 + = 1 + f 76 

i+AC ^ UC, ̂ 1/4 2AC AC „ AC, _ 
[(1 ~) + (——) ] % 1 - + 4(—|)^ + 4(—|)^ 77 

B B B B B 

After some algebraic manipulation the result is 

The root h^ is thus seen to lie close to the root -C which would result 
^ 3 

if A = 0. In the following integration, h^ will be taken as 

C C 

^1 ̂  ~ "^"B 

Of concern here is the integration designated in Equation 60 , from 

the root h^ to some point h on the real axis. This integration on the 

complex h plane will be carried out, for simplicity, along two recti­

linear paths. Path one extends from the root h^ to the real axis, while 

path two leads along the real axis to h. This integration path is shown 

in Figure 2. 

Of particular interest is the integration to the origin, since the 

resulting function u(0) will be involved in the eigenvalue equation for 

the perfectly conducting earth. It is easily seen that is a positive 

number, since the attenuation of each mode with 0, or distance, goes as 

• 0 fi 
e~ s, where s is the mode integer. It is of interest to inquire into 

i 

the sign of C^. 
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In(h) 

\'nath 1 

Re(h) 
path 2 

Figure 2. The path of integration for u(h) 
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If is positive, the root lies in the second quadrant of the h 

plane. As h takes on values along path one,[kh^ + Bh + cjhas a negative 

2 X/2 
imaginary part. Then [Ah + Bh + C] moves along some contour in the 

second or fourth quadrant, depending on which square root is chosen. For 

example, suppose the root with the positive real part is taken. Then write 

path ^ + C]^/^dh = f w (x)jdx-j v (x)jdx 80 
C^/B ^ C /B ^ 

where w (x) and v (x) are non_n:gative functions of the real variable x on 

^1 
the interval [0,~]. Then and defined by 

C 
j W^(x)dx = 8l 
o 

and 

C^/B 

o" 

are non-negative numbers. 

( [Ah^ + Bh + Cj^^^dh = - jT - T 83 
one J X d 

The choice of the square root with a negative real part along this path 

gives a similar result; with opposite sign. So one csji write 

OTe^I + 3h + Cj^/^dh = + (t^ + 84 

Along path two, h is real and [Ah"^ + Bh + C] again has a negative 

imaginary part. Here the square root with a positive real part must be 

taken, since it is necessary that u(h) be an increasing function of h for 
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2 l/2 
large h. The root [Ah + Bh + C] therefore lies in the fourth quadrant. 

j[k\? + Bh + C]^/^dh = /[w (x) - jv (x)]dx 85 
-C _C 
0  o 
B B 

where w^Cx) and v^fx) are non negative functions of x. Define and 

by 

J'w^(x)dx = 86 

_o 
B 

J V (x)dx = r, , 87 
-C 2 
o 

where and are non negative numbers if C^is positive as assumed. It 

is then true that the integration over -oath two Fives 

i [Ah^ + Bh + Cj^'^^dh = x^ - jx^ . 88 

The boundary condition at the surface of the perfectly conducting earth 

requires that 

+ (xg + jx^) + T3 - = --E , 89 

as will be shown later, where x is a nositive real number. This eoua-
' s -

tion cannot be satisfied for either choice of sign. 

If is chosen to be negative, integration along path one is 

essentially unchanged. For h real and on path two, integration is in 

the negative h direction. The numbers x^ and x^, still defined by Equa­

tions 86 and 87 , are then both negative, and the above equation can 

be satisfied by the choice of the lower sign. 
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The integration necessary to form u(h) is presented in Appendix C. 

The result is 

[Ah^ + Bh + 
o 

. ItAC-B^ , [Ah^ + Bh + + 2Ah + B 

ZAC. 1/3 
B(1 {-^C R'^ 3/2 3/2 

^  -0^ - ^  
2B 8 2B 

The evaluation of this function for h = 0 is also accomplished in Appendix 
7 

c.  

I 
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V. THE EIGENVALUES FOR THE PERFECTLY CONDUCTING EARTH 

For the perfectly conducting earth, the eigenvalue equation is given 

by Equation 37 • Written in terms of the Langer solution, this becomes 

1/2 
= 0 91 

The eigenvalues are those values of v for which 

u(o) = -Tg 92 

where are defined by 

«1/3'"'-^' ' " 93 

The two transcendental equations in C and C. thus are written 
o 1 

Re u(o) = -T^ 9^ 

and 

Im u(o) = 0 . 95 

From the results of Appendix C, the above relations become 

2  2  Y  1  Y  , 3  3  Y  
^2 D cos ^ D^cos ̂  kD^cos^ ̂  

+ T-r̂  + 2 
® 3B 

-C CD cos^ .C,D sin^ -T 
° + ° 2 _ 1 2 , ̂  56 

and 

0/2 2 Y Y Y 
C^ C J' D sin ̂  cos | C^D cos | 

Ï72" TEI " .*1/2 B 1|A ' 2 J2B 2A 

D and Y are defined by the relations 
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D = = |cl/2| 98 

and 

"^1 Y = arc tan — . 99 
o 

The technique for finding eigenvalues for Equation 3^ is to 

choose values for A and B which describe the profile to be analyzed, and 

solve Equations 96 and 97 simultaneously for and for each value 

T^. The values of and then determine a and S by Equations 71 and 

72 . The first four values of to three places, have been riven by 

Bremmer as 2.33, 5.50, 8.60, and 11.73. 

Figure 3 presents the locus of points (C^^C^) which satisfy Equation 

97 , and the loci of solutions to Equation 96 for two typical values 

of — . As s takes on the values 1,2,3,..., for a riven frequency, the 

curves intersect at increasing values of C^. The points of intersection 

give the eigenvalues and For a given integer s, the intersection 

occurs at smaller values of C^, as k^ increases. The value of 3 increases 

with increasing frequency, however, due to Equation 72 . 

The attenuation parameter for the first and strongest mode has 

been plotted versus frequency for several choices of (n^-l) and c in 

Figure U. The work of Post (28) indicates that the initial value of the 

gradient of refractive index is substantially more important as a para­

meter than the scale height. Therefore ^ has been given values for Fig­

ure 4 which match the initial gradient of the present model to those which 

are typical in the atmosphere. The upper curve gives Friedman's result 

for the corresponding variable. This curve is nearly independent of the 

parameters c and (n^-l), and indicates that Friedman's first mode is much 

/ 
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n -1 = 2.W X IC ^ 
o 

1/c = 5.15 X 10^ meters 

0.501 
l.li82 

X 10 

-0 .25 -C.T5 -1.0 0 -0.5 

X 10-'' 

Figure 3. The loci of solutions to the transcendental equation 
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Firure *4. Attenuation of first rode versus frequency 
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more highly attenuated throughout the frequency range of interest. 

Appendix D shows how Friedman's expression for 3 can be found as a special 

case of the present model. 

It should be noted that the first mode is dependent on distance along 

— 6 0 
the earth according to the function e 1 , where 6 is the angle away from 

the source. A lower value of means a slower decay of the field strength 

versus distance. It can be seen from Figure 4 that en increase in (n^-l), 

or in c, or both, results in a smaller and stronger diffraction fields. 
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VI. THE COMPLETED SERIES FOR E, 
4) 

To complete the series for the electric field, the factor must 

be evaluated for this particular profile. 

V. = M 
9^ f. ? 3 f 

3v 9r 1 9v9r Dv 9r ' 9v9r 
100 

If the wave number of the earth dominates the right hand side of 

Equation 36 , it must be approximately true that 

9v 
dr = 0 . 

r=a 

Then the factor W* assumes the customary form (12) 

9f 9f. 

101 

_ f 
"1 8v9r 

r=a 

102 

r=a 

where f^ is now treated as a function of the two independent variables v 

and r. The above relation is adequate unless the earth is taken to be 

poorly conducting. 

For the case of the perfectly conducting earth. Equation 102 simpli­

fies to 

3f 3f 
v=v 

r=a 

103 

The expression 103 can be evaluated using the form for f^(r) already 

developed. However, the resulting series for E^does not lend itself to 

numerical evaluation as well as an alternate method due to Friedman (12). 

Suppose that the earth is a good, but not perfect conductor. Then 

Eauation 102 can be written as 
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IOI+ 

r=a 

= [f^ (a)]2 M 105 

where H is defined ty the last equation. Friedman has found an approxi­

mate value for M by an involved procedure that will only be outlined here. 

To proceed, it must be recognized that the dominant tern in the expression 

9fl 
involves the function 

2(x) = ̂  "1/3 . 10$ 

Only this dominant term is saved. Then, by examining the equation satis-

.fied by it is found that Z(x) satisfies the Ricr.tti equation 

Z '  + Z ^ + - + 1 -  =  0  .  1 0 7  
9x3 

Therefore, for larce x, 

z' t i - I . 108 

When the differentiation with respect to v is performed in Equation 104 , 

Z' is eliminated with the above equation, and Z is eliminated by Equation 

36 . The result, when the earth is a good but finite conductor, is 

,2, X 
M = (1 - 109 

o 

where k(a) is the surface wave number. The use of this approximate formula 

is probably justified if, as in the present study, the variation of field 

strength with distance is of prime importance. 
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The series for E, thus takes the form 

E = r 

o 

f^{b) f^(r) 

f^(a) f^(a) 

''jjiCv̂ +l) sin0̂  

1/2 
exp[ô(v^ + ^)0] 110 

The results of the present analysis have been compared with other 

results by computing the ratio of field strength to the free space 

field strength which would result in the absence of the earth. This 

ratio has been expressed in decibels and plotted in Figures 5 and 6 for 

two choices of frequency. Curve 1 indicates the result computed by Post 

(28) for a linear atmosphere, while curve 3 indicates the first normal 

mode as given by Friedman. Curve 2 represents the field as written in 

Equation 110 . Friedman's formula gives a highest attenuation through­

out this range of frequencies. Above about hl2 megacycles per second 

the field strength of the present method suffers somewhat less attenuation 

than that of Post (28). 

Experimental field strength measurements at 190 megacycles per 

second are presented in Ghose and Albright (l6) which were taken during 

periods when meteorological stations indicated a uniform linear gradient 

of refractive index along the 127 mile path. Psi attenuation of about 

3/4 decibel per mile was measured. This agrees well with curve 2 in 

Figure 5. 

In Figure 7, attenuation in decibels of the field strength is plotted 

versus the initial or surface value of the gradient of refractive index. 
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< -220 
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U 

-260 

50 100 150 200 
NAUTICAL MILES 

Firure 5. Decibels of attenuation versus distance at I90 megacycles per second 
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Fipure 6. Decibcls of attenuation versus distance at hl2 meracycles -per second 
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dn/dh X 10 /meter 

Fif-ure 7. Decibels of attenuation at 1?T miles and I90 megacycles per second 
versus initial /-radient of refractive index 
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Curve 2 represents the results of the present study, while curve 1 gives 

the attenuation predicted by Post (28). Curve 2 is plotted for n^-1 = 

4 X 10 ^ and c changes as 

The selection of frequency and distance given in Figure 7 was made so 

that these curves could be compared with similar experimental measurements 

reported by Ghose and Albright (l6). ITie dotted line in Figure 7 indicates 

the experimental data. Only the slope of this curve is significant since 

absolute field strengths were not reported. 

The agreement with experiment that has been discussed is thought to 

be particularly significant in view of the fact that the data was taken 

when meteorological instruments indicated that the actual profile was 

comparable to this model. 



www.manaraa.com

39 

VII. CONCLUSIONS 

The classical or normal mode solution for electromagnetic wave 

propagation around a spherical earth can be found for the particular 

profile of refractive index which is described by a quadratic function. 

The inclusion of the quadratic terra in the profile description alters 

the dependence of the Langer solution on the parameter v. The careful 

solution of the boundary value problem for this profile results in eigen­

values which differ significantly from the values obtained for the homo­

geneous atmosphere. 

The dependence of the eigenvalues on frequency is essentially un­

changed from the homogeneous case. The eigenvalues, and hence the dif­

fraction field strength, show a marked dependence on the surface value 

of the refractive index and its gradient. An increase in the surface 

refractive index or in its initial gradient effectively increases the 

diffraction field strength. The dependence of field strength on the 

initial gradient of refractive index, predicted by this analysis, agrees 

with the results of other investigations and with corresponding experi­

mental data. Attenuation of field strength with distance, computed by 

the present method, is in good agreement with experimental measurements 

taken under meteorological conditions which suggest a meaningful 

comparison. 
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X. APPENDIX A 

Watson (36) considered a series of the form 

S = E a P (cose) 112 d n n 
o 

and showed that it coiild he represented as the integral 

f (t + 1/2) a P (-cose) 

^ = 2? J 
where C is a contour which starts at «> - j5 on the t plane, p;oes below 

the real axis to t = - 1/2, and returns above the real axis to «> + jô, 

as in Figure 8, 

If a^ and P^(-cos6) are analytic functions of t, the sin/^ularities 

of the integrand occur for those real values of t inside C for which 

sinirt vanishes. Then I can be \fritten as a sum of residues 

~(n + 1/2) a P (-COS0) ^ 
I = - E 2— E (n + 1/2) a P (cos6) ll4 

TTcosniT TT n n 
o o 

/Then this procedure is applied to Equation 29 , 

r (v + l/2)g(b)f (r) P (-cose) 
F = _ fiij — 1 -1^ dv 115 
r 4it r J sinirv 

On the part of C below the real axis, d.esifnated by in Figure 4, v is 

replaced by -v-1, so that is transformed into and 

f (v + l/2)g(b)f (r) P (-cose) dv 
F  = - ^ J  —  
r 4Tr ;; ]•! ^ sinirv 

C_ -v-1 
3 

r (v+ l/2)p(b)f (r) P (-cosG) dv 
- ̂  J 1 ^ 116 

4Tr ^ W sinirv 
=2 

The contours and are now rotated upward until they enclose the 

positive half of the line given by 
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Re V = - 117 

As the contour is moved in this manner, it raay pass over some poles of 

the integrand. Then can be expressed as the sum of the residues at 

these poles, plus two integrals over the line described above. Put 

v = -^=.iT, so that 

F = Z residues 
r kir J -COShTTT 

(-cos9) 

K(b)f^(r) 

''.IT-1/2 

i^(b)f^(r) 

r W 
CiT 118 

Friedman has shown this integral to be zero when the earth is perfectly 

conducting, and small enough to be dropped when the dielectric constant 

of the earth is large compared to the surrounding medium. 

The poles of the original integrand are at those values of v for 

which vf = 0. Then the residues at these noints v can be written 
s 

F = Z 
r 

s 

(v^ + l/2)g(b)f^(r) T'y^(-cosG) 

r W (Vg ) (simrVg) 
119 

This brief explanation of the Watson transformation is due mainly to 

Breramer (5) and Friedman (12). 
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XI. APPENDIX 3 

It is desirable to present a brief discussion of the Langer asymptotic 

solution for a particular ordinary differential equation. It is important 

that the symbols used to define functions and parameters in this section 

should not be confused with those in the remainder of this thesis. The 

notation follows that of Langer (21). 

Tlie differential equation to be solved has the form 

u"(z) + [p^(|)^(z) - X(z)]u(z) = 0 , 120 

where X(z) is assumed to be an analytic function in the region of interest 

2 
R. The coefficient (j) (z) is of the form 

<j)^(z) = z^(fi^(z) 121 

2 
where v is a real non negative constant and cj)^(z) is a single-valued 

analytic function bounded from zero. 

How define 

$ = j (j)(z)d^ 122 

where the integration is performed on a Biemann surface which is appro­

priate to a single-valued representation of #(z). The integral is then 

independent of path and has the form 

v/p+i 
1? = z $j^(z) , 123 

with 0^(z) single-valued and analytic in R and $^(o) f 0. 

Define y by 

and Y(z) by 
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1 

Y(z) = 125 

If 

Ç = p$(z) " 126 

and 

y(z) = Y(z)S*C+^(S) , 127 

where is a cylindrical function, y(z) satisfies the related equation 

y"(z) + {p^<j)^(z) - w(z)}y(z) = 0 128 

where w(z) is analytic and single-valued. The technique now is to show 

that the solutions to 120 are expressible in terms of y(z). The cylindri­

cal functions to be used are Hankel functions, so 

ç" Il even 

= 129 

îM- çf II , k odd, 

J S-i " 

where 

A. = (|) ̂ e-(^ ^ 2)^^/2 . 130 

By defining 

0(z) = X(z) - w(z) , 131 

Equation 120 becomes 

u"(z) + {p^(j)^(z) - w(z)}u(z) = e(z)u(z) . 132 

The solutions for u(z) then are 

1 
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X 0(z )ii, . (z )dz 133 
JL K ) 1 ± ± 

Langer has evaluated the integral above as a series of terms involv­

ing p where n is the number of the series term, /m examination of the 

convergence properties of the series shows that, for large p, the sum poes 

to zero. The solutions u^ ^(z) go asymptotically to y^^ ^(z) as p becomes 

large. 

) 
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XII. APPENDIX C 

To complete the integration for u(h) along path one, make the change 

of variable 

-C 
h = -2- + jx . 13it 

Then one can write 

P P 2AC AC 2 
Ah"^ + Bh + C = X (-A) + x(ô3-j-~) + C - C^ + —g- . 135 

3 

It is approximately true that 

AC ^ 

C - Co + -JCi , 136 

ACo' 
since C is much larger than the anticipated values of —^ . Mow define 

^ B 
the parameters H, P by the relations 

= A 

2 AC 
N = -JB(1 137 

P = +jC^ 

and note that 

«•/dx = • ^38 

Then the integrand can be expressed as 

[Ah^+Bh+C]^/^ = j[Mx^+nx+P]^/2 . 139 

The root on the left is to have a positive real part, so that the root on 

the right, above, must have a negative imaginary part. The integral then 

becomes 
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path 
one 

\ [Ah^+3h+C]^'^^dh = ( j [i-ix^+Nx+P]lliO 

^1/5 

f[Mx^+Nx+P]^/^dx 
o 

It can be determined by differentiation that 

[l!x^+hx+P]^^^dx = 

[Mx^+IIx+P]^/^ 

li+1 

/' 

+ L0E[2H^/^(Mx2+Hx+P)l/2 + 2!(x + K] . lh2 
8y3/2 

In this analysis. Log will designate the logarithm to the base e of a 

complex number, while log will indicate the logarithm to the base e of a 

real nuraber. 

2 
At the upper limit of expression l4l , J-îx +Kx+P vanishes, by defini­

tion. The integral in Equation ll+l then becomes 

n n,. .2 2MC 
( [iMx^+Iix+Pj^/^dx = Log[^-^ + N] 

. 11.3 
8i>r' 

i/p 
where P " must have a positive real rart. 

[jc = c 1/2 (:i_ j 

J2 . J2 

llil+ 

If the logarithm functions are combined as the logarithm of a quotient, 

the numerator and denominator of the argument can be divided by il. The 
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integral can then be written as 

C 

( [Mx^+Nx+P]^/^dx = ] J Log[l + -r^] 

1/2 BC BC C c 1/2 c c 1/2 

- g  = -  +  _ l _  +  2 J ^  1 1 6  

h 2A 1+ 2A 2 2B 2 2B 

Using Equations 137 , 
P kAC 

jUC + 3^(1 
iiMP-ir ^ 3"-

8I1^/2 8^3/2 

To evaluate the first logarithm in Equation 1U5 , write 

2MC 2AC 
— — = Î I I !• Ill I 
3ÎI •' ^2 

II+8 

How note that, if x and y take real values, 

Log[l + X +•jy] = ̂  log|l + X + jy|2 

+ j arc tan 1^9 

= ̂  log[l + 2x + x^ + y2] + j arc tan (y - yx), 150 

where only two terms have been included in the argument of the arc tan 

function. Therefore, it is true that 

2MC U2c 2 2AC 

Log[l + ̂ yg-] = 2 log(l + jj—) + j arc tan —— . 151 
3 3 

Using the series 

x2 x3 
10g(l+x) = x - — + — + ... 152 
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for X < 1, it is found that 

log(l + r—)= r— + higher terras 153 
B 3 

It can be determined by investigating the orders of magnitude of the 

terms involved here that quantities involving B to the fourth power, 

or higher, in the denominator, can be neglected. In addition, the argu­

ments of the arc tan functions in this appendix are generally less than 

0.05, so from the series 

x3 2x5 
tan x = x + — + + ... 15^ 

it can be seen that arc tan 6 can be approximated by 0, with negligible 

error. Therefore one can write 

2I''C 2 AC 
Log[l + -^] = j —f . 155 

B 

To evaluate the second logarithm in Equation 1^5 , use the relation 

1/2^1/2 |2ÂC- 2AC JâÂc" J2ÂC 2AC JMC" 

Using the relation I50 for the above expression, let 

4̂ 1 2AĈ  J2ÂĈ  
X = -T- + -

2 ZACi 

y = -
2AC^ Y/2AC^ 

15T 

^ b3 

2 2 y = X = -yx 

The result is 
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fzAC, 2AC ( 2AC, 2AC, 

158 

Equation 152 can be used to evaluate the log function, to yield 

"iÂc 3AC /iÂc^ , „ 2M:/2pl/2, JZACl . 2ACo , 
LOR[1 + 5 ] = — + -T 

2B" 

+ j ( -
[2AC, 2 AC ^ 

1 
2AC^ 2AC. 

159 

Now define A by 

2WC 
A = L0g[l + - L0rr[l + — 1 ] 160 

Combining Equations 159 and '155 gives 

12AC 2AC J 2ACl 3AC^ J2AC^ 
A — — 

. . j 

2L-

2AC 0/̂ 1 

3-

2AC^ j2AC 

3143/2 ' " 2a^/2 " 2*1/2 - B J B > 

161 

8a 3/2 
(-

2AC, 2AC \ 2AC, 3AC, 
1 o "J 1 ̂  ^ 

2AC 1. .-F^] 
S 

+ ,1 
2B-

• B 

2AC I 2AC, 
+ j 1) 162 

In the above relation, the smaller terms have been deleted from A in the 

first product. Combining Equations 162 and 1^+6 in 1^5 , all but two 

terms cancel to give 
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/ C 3/2 ce 3/2 

[Ah^+Bh+Cj^/^dh = - j— — 

one 163 
JiB 8 Ji" 

The integration along the real axis (path two) can be accomplished 

in the same manner. Using expression lh2 , one obtains 

h, 

-C 
([Ah^+Bh+Cj^/^dh = [^^^~][^Ji^+Bh+C]^/2 

+ (àAÇcB-j Lo, 
0,3/2' 8A-

2A^/2(Ah^+Bh+C)^/2 + 2Ah + 3 

L2A^/2(_jCj:/2_!^+B , 

loll 

5(1 - )!/" 

This functior will now be evaluated for h = 0. 
2AC 

o 

-C 
[Ah^+Bh+C]^/^dh = 

3cl/2 B(1 - —^)(-,1C^)^/2 

o -
TÂ 

+ (^^^^) LoR[2A^{^cl/2 ̂  Lor[l _ 

8A 3/2' 8A 

2AC 
o 2A 

165 

1/2 

3 

1/2. 

2 1/2 1/2 
Since [Ah +Bh+C] is to have a positive real part, C should also have 

a positive real part wherever it appears in Equation 165 . This root of 

C can be expressed as 

C^/2 = D(cos ̂  " j sin |-) 166 

where D is defined by Equation 98 and \jj is defined by 
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-^1 >jj = arc tan — . l6j 
o 

where 

168 

Therefore 

g^l/2 3D cos I 3D sin | 

ÏÂ = ""HT" - ~Tr~ 

-30^/2 BC C C C C 
=  + j - 7 _  + —  - j —  1 6 9  

i j j 2 A  1 + J 2 A  2  J 2  B  2 ^ 3  

To evaluate the first logarithm, write 

1/2 1/2 cos I ZA^/Zp sin 

B = B - B 170 

Substitute this into the form 15O to get 

" ' = i 10,(1 . 2 . i!f') 

3 

+ .1 (. Sin I cos |) , 171 
3 

CCS I ^^2 cos I 
lodl * -2 ' = 3 + -2 

1) )i 

8/iD^ cos^ I 16A^/^D^ cos I A^/^D^ cos^|-

— — • 

Second logarithm, becomes 

I 



www.manaraa.com

57 

2AC ^ kAC 
Log[l ^ ̂  - j -^] = f logd -

3 B 
2 X2AC, 14AC, IJAC ^("210, 

.|2AC, 2AC 2AC, 2AC, .filc, 

, -4AC 2^(2AC, lAC /iÂc, 3AC, J2AC, 

2AC^ 2AC^ J"2AC^ 2AC^ 2AC^ ̂/iÂc^ 
+  ' i ( - ^ -  3 174 

B" 

Now note that 

l4AC-3^ '•'o . *^1 

8.3/2 - ̂ 1/2 - ^ ̂ 

Substituting Equations l68 , 169 , 171 , 17^ , and 175 in the Equa­

tion 165 yields 

Path( _ .15= . 2 2 
two 

\ [Ah +Bh+c] -dh = j + —= nr 
UA ' 2yf2 B 2A ' 

C^D cos I" CD sin |-1 Td^ cos^ ^2 cos 

-I'LlFTT -;%i72' — 

cos^ f C 5C,3/2 C D COS i C,D sin f 

— — ' 

:f .  ] 



www.manaraa.com

58 

XIII. APPENDIX D 

Friedman (12) has obtained, by a series of approximations and i 

single real integration, the relation 

"s = a + e 

The corresponding relation for g then becomes 

This compares with the results of the present work if A is set 

equal to zero before the integration is performed. 

J [Bh+Cl^/^dh = %-[Bh+C]3/2 i-D 

Along path one, let 

-C 
, o ^ . h = — + ,]x 

so that 

dh 
dx = J 

Then 

\ [Bh+C]l/2ah = j \ [j3x-jCj^/'dx 
^l/B 

I [j3x-jc^; 
= §3 [JBX-JC^]3/2 

1/3 

= & 

Integration along the real axis gives the result 
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J [3H+C]^/^DH = - (-JC^)3/2] 183 

3 

Combining Equations l82 and l83 yields the eigenvalue equation 

1B c'/' = F 

3/2 
In order that C be real, one must require that 

^ 185 

ana 

Then 

C. 
-C - . l86 
o 2 

|C| = Cj . 187 

From Equation l84 

33% 
c| = 188 

o 

so 

9 3BT^ 2/3 
Cl = (-2k^) 189 

5 o 

For the free space atmosphere, 

B = - 190 
a 

so 

5 o o 

The final result is 



www.manaraa.com

6o 

6 = (k )2/3 192 

5  

In comparing Equations 192 and 178 , it seems that Friedman's result 

is equivalent to using a two term expansion for Y(h) in the height train 

differential equation, instead of the three term expansion used in this 

analysis. The solution for the height gain function in the case of a 

linear function Y(h) can be obtained rigorously, without recourse to the 

Langer asymptotic method, by making a change of variable to put the dif­

ferential equation into the form of Stokes equation. The solution then 

takes the form of the Airy integral, as discussed by Sudden (j) and others. 
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