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I. INTRODUCTION

The study of the propagation of electromagnetic waves over the sur-
face of the earth has long commanded a great deal of intercst because of
the mathematical tehniques involved and because of the obvicus practical
significance of the problem., The history of this study can be traced to
the modal representation presented by Lord Rayleigh (29) for sound waves
emanating from a point source beside a large spherical boundary. In this
fepresentation, each mode took the form of a Bessel function of large
order.,

G. N. Watson (36) adapted the Rayleigh solution for electromagnetic
propagation, and transformed the resulting series to an alternate form
which converged rapidly enough to permit numerical evaluation., van der
Pol and Bremmer (33) extended the Watson residue series to accomodate an
arbitrary conductivity of the earth and an arbitrary dielectric constant.
The model here involved a homogeneous atmosphere.

Schelleng, Burrows, and Ferrell (31) then vroposed z model in which
tropospheric refraction would be taken into account by using an effective
radius of the earth equal to about 4/3 the actual value, thus extending
the effective radio horizon. The validity of this general approach and
the "classical %-earth radius" theory was assumed for some time.

A more critical study of the entire problem was stimulated by the
publication of reliable exverimental field strength measurements, such as
those by Megaw (22), and Gerks (15), which indicated that fields beyond
the radio horizon were commonly much stronger than the classical wvalues.
Three separate hypotheses were advanced to explain this discrepancy. The

"turbulent scatterer" theory was advanced by Booker and Gordon {2), who



argued that local, time-varying anomalies in the refractive index effec-
tively scatter energy beyond the horizon. Bullington (8) formulated the
scattering of radiation due to the roughness of the surface of the earth,
and obtained field strengths greater than the classical values.

A third group of investigators made a more critical study of the
original mode theory in an attempt to bring together experimental and
theoretical results. A brief history of this effort is desirable, since
the classical mode theory forms the basis for this report.

Pekeris and Ament (27) comvleted the normal mode solution in eylin-
drical coordinates for several profiles of refractive index. Kerr (19)
has collected several analyses, also concerning the flat earth, which
were stimulated primarily by military work with radar. Bremmer (5) pre-
sents an exhaustive review of the classical results in spherical coordi-
nates, including a physical interpretation of ray tracing and the
Wentzel-Brillouin-Kramers method (10).

Wait (34%) carefully analyzed the hypothesis of the homogeneous earth
and concluded that such a model was justified. GChose and Albright (16)
studied the normal modes for a choice of smooth profile which yielded a
height gain equation that could be solved exactly. Experimental data
quoted by Ghose and Albright has been compared with the results of the
present study, with good agreement. |

Carroll and Ring“(9) showed, in an exhaustive treatment, that for
several particular profiles, higher order modes could make a significant
contribution to the field strength. Bremmer (3) has studied the mode

expansion for smooth profiles and obtained field strengths smaller than

those of Carroll and Ring.



Budden (6,7) has reviewed the standard mode theory with particular
emphasis on ionospheric propagation. Included is a treatment of Stoke's
equation and the Airy integral solution. Post (28) has used earth-
flattened coordinates and a Green's function technigue to allow the normal
mode solution to accomodate an aerbitrary profile. Some numerical data
from Post has been included in this report to allow comparison of results.
Gerks (1h4) has reviewed the entire mode solution as it applies to a
spherical earth and a stratified atmosphere. Wait (35) has discussed the
most recent work with the normal mode theory and low frequency applications.

The attempt to find solutions for a general class of height gain dif-
ferential equations was begun by Furry (13), who applied the well-known
W.K.B., solution to a bilinear profile. Pekeris (26) derived an asymptotic
solution by means of a power series expansion. Langer (20), motivated by
Pekeris'work, showed that the results of one of his earlier papers (21)
could be applied to the problem of microwave propagation, but did not
conplete any quantitive check on the solution.

Friedman (12) has made extensive use of the Langer solution in formu-
lating the mode solution for a general stratified atmosphere. ie obtains,
for any smooth, monotonically decreasing profile, an expression for the
eigenvalues which leaves them essentially unchanged from the homogeneous
atmosphere values. Northover (23) has obtained the same qualitative re~
sult by é different method. Bremmer (U4) has studied the dependence of
the Langer solution on the complex root hl'

This analysis draws freely on the classical mode solution as written
by Friedman, A particular smooth profile, approximating an exponential

profile, is specified by a three term power series, or quadratic. The



proper integration is performed to generate the Langer solution for this
profile, and the transcendental equations defining the eigenvalues are
obtained. HNumerical examples are presented to compare the results with
those of Friedman and Post. The Friedman expression of the free space

eigenvalues is obtained as a special case of the present solution.



II. FORMULATION OF THE PROBLEM AITD THE GENERALIZED SOLUTION

This analysis deals with the électromagnetic fields produced by an
elemental monochromatic magnetic dipole vertically oriented above a homo-
geneous conducting sphere. Of particular interest is the case in which
the radius of the sphere is very large compared to the free space wave-
length, and in which the dielectric medium surrounding the sphere is
described by a refractive index that is given a specified functional
devendence on the radial coordinate.

For the purposes of this analysis, a2 point magnetic dipole of strength
m is defined as a planar loop of radius R, carrying current I, in the

limiting case as R becomes arbitrarily small such that m = 1im RI. This
R+0
T
source is somewhat analogous to a horizontally oriented antenna in that
the polarization of the resultiﬁg electric field is the same,

The problem is presented in ordinary spherical coordinates r, 6, and
¢, as depicted in Figure 1. The dipole is radially oriented and located
at r = b on the axis defined by 8 = 0. The radius of the sphere will be
given by a. This geometric configuration is obviously an appropriate
idealized model with which to study the propagation of electromagnetic
energy around the earth at high freguencies.

The choice of the magnetic dipole source as opposed to the electric
dipole is made because the resulting boundary conditions are considerably
simpler. This choice is further justified by the fact that experimental
evidence indicates the field strengths in the diffraction region, or

beyond the radio horizon, to be relatively independent of the polariza-

tion of the source (9). The frequency range for which the model is



oN

//

Figure 1. The spherical coordinates of the problem



accurate will have a lower bound due to the lack of consideration of the
ionosphere. Field strengths calculated on the basis of a perfectly con-
ducting earth will be valid for those freguencies at which the earth
appears to be a very good conductor.

It will be instructive to review the classical construction of solu-
tions to Maxwell's equations in terms of a magnetic vector potential-z
and an electric potential'fl The notation here will be that due to
Harrington (17). The electric field intensity’i?and the magnetic field

-
intensity H must satisfy Maxwell's equations for a source-free region,

except at the source point.

jwuH Vell = 0

<]

>

=1}
i

=

s -—h
-Jjwek Veli = 0

<
4

-juwt

The time dependence of e has been removed, so that real time expres-

sions can be obtained for these field intensities by taking the real part
s -
of the products e 9“% and Te VT,
It is customary to relate notentials to intensities by requiring

that

- -

E = -UxF 2
when only magnetic sources are present, and

— -—

H = UxA 3
when only electric sources are present. In the case of both sources, the

fields due to each source are superimposed to yield the relations

B =VxF 4+ ~— UxVxA
we

H=UxA + —~ VxVx F
wy

-—
The potentials A and'ﬁ'are still arbitrary to the extent that a particular



"gauge" transformation can be made. Tor one such choice, the potentials

satisfy the wave equations

vE + kF = 0
>
o=+ XF = 0
V'F ’
vhere k 1s the wave number defined by
K2 = mgue . 6

- -—h
It is possible to revresent, by means of the potentials A and F, an
arbitrary electromagnetic field as the superposition of a magnetic field
transverse to the radius vector, (TM), and an electric field transverse

-~

to'?; (TE). For this purpose it will be reguired that

— —
A=Ace
rr
T
—
F=FT%
rr

where'g; is a unit vector in the radial direction. Equations 5 require
by ——

that the rectangular components of A and F satisfy the scalar Helmholtz

wave equation. By substitution into these same equations, it can be de-

A F
termined that the functions ;E and ;£ also satisfy the lelmholtz equation,

A
[v° + kz]}i =0 8

1
(@]
L]
O

F
[V2 + k2]-r-£ =

At this point it is appropriate to recognize that the potential vec-

tor T is essentially identical to the radial "Hertz" vector used exten-
sively by Friedman (12), and Bremmer (5), and it is also equivalent to
the "magnetic potential" E; discussed by Panofsky and Phillips (25). It
is known that an arbitrary field can be constructed frdm the TE and T™

-—d —
modes which are generated from the radial vectors F and A, since these



modes form a complete set (17). It is well established from the work of
Bremmer (5) and Friedman (12), however, that for the particular problem
outlined here, involving a radial dipole and radially stratified index of
refraction, the fields can be generated from 2 single radial potential F.
This assertion need not be proven before-hand, since the unigueness
theorem, as given by Harrington (17), provides assurance that a solution
obtained from a single potential, radially oriented, will be the only one
possible,

To proceed with the classical solution, one writes the operator
[V2 + k2] in spherical coordinates and uses the method of séparation of

variables to solve Equation 9 . Since by symmetry there is no ¢ depend=-

ence, let

]

0(8) r(r) . 10

=
r

The separated equations which result are

1 d,.2dR 2 v(v+l),. _

> dr(r dr) + [x° - s IR =0 11
r r

1l ¢ . a0 -

TR (siné 55) + [v(v+1l)]o = 0 . 12

The separation constant is given by v(v+l). The requirement that- O be
defined for all © on the closed interval [0,m] requires that v be a posi-

tive integer. The solution for 0 is then
9 (8) = P (coso) 13

where P(x) is the well known Legendre function. In the case of a homo-
geneous medium, the solutions for R are the well known spherical Bessel

functions
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- o ho
Rv ~ o Zkr Dv+l/2(kr) > 1k

where B(kr) is an ordinary Bessel function.

The solution for Fr then becomes

Fr = 5 Cv r hv Pv(cose) 15

where Cv is a constant.

—

A
It is helpful to define the function Bv by

A

B, =TR 16
A

The differential equation which Bv must satisfy is

2

. ~
L ¥t 212%&1 5 =0 17
dr r

In the special case of the homogeneous mediuwm, the functions Bv are, apart
from a multiplicative constant, the spherical Bessel functions due to

Schelkunoff (30).

A
Inside the homogeneous earth, the choice for Bv is that Schelkunoff

function which is regular at r = 0, so that
Fa)

B =2

v T vi1/2(ET) 18

The complex wave number k. characterizes the permittivity and conductivity

1

of the earth. Thus, for r < a, Fr is given by

P =EC r'dJ

ro v v+l/2(k1r) Pv(cose) 19

From Equation 2 , the electric field intensity can be obtained from

F by the relations

E =E. =0 20
r 0
aF
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To form the series for Fr valid for r > a, one must take into account the
dipole source and the dependence of k on r. TFriedman's form of the solu-
tion will be used because the series for Fr can be completed in terms of
generalized functions without specifying the exact "profile", or depend-
ence of € on r. Panofsky and Phillips (25) have shown that the notential
F satisfies a wave eguation similar to 5 , but with the magnetization
vector wum as a source, where Hy is the permeability of the medium. The

scalar wave equation for Fr then becomes

=

[V2 + k2] ;E _ —Jun_6(r-b)s(8) 0o

2nr2 sin
where & designates the Dirac delta function and the feactor 2nr2 sinb
normalizes the dipole moment to unit strength.

ext, a series for Fr is assumed in the form

~
) Bv(r) Pv(cose) 23

_ 2v+l
Fr—2(2
\Y

Using this representation in Equation 22 , one can multiply both sides
of the eguation by Pv(cose) sin® d6 and integrate from 0 to w. The result
is the following equation:

2 A

& (B) + [kB(r) - )y 5 -dw ‘éér-b) .
dr T Tr

Friedman has constructed, by the method of variation of parameters, the
solution to this equation in terms of solutions to the homogeneous Equa-
tion 17 . The solutions to the "height gain" Equation 1T are known to
behave approximately like Bessel functions, but the exact behavior depends
on the profile. In any case, one of the linearly independent solutions,

+i
to be designated as fl, can be expected to be asymptotic to e lkor for
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large r. The second, f,., will be asymptotic to e-lkor for large r. Here,

2’
kO is the free space wave number. Let g designate some linear combination
of the solutions fl and f2. Then the solution to Equation 24 has been

shown by Friedman to take the forms

A~ Juou g(r)f,(b)

b= 2mr W »a<T <D 25
A~ dou_g(b)f, (r)
B: o——-——-]-'——-’r>b 26

21r ¥

where W is the Wronskian of the two solutions.

af
o dg 1
L W el S 7

Friedman has shown that the Wronskian is independent of r for the magnetic
dipole problem. VW will be written as W(v) to emphasize the dependence

on the parameter v, The series for Fr then becomne

Jwu g(r)f. (b)
F.==3 = (2:+1) = Pv(cose) 28
Ty o F r W(v)
for a < r < b, and
Jup g(p)f (r)
Fr = 2ﬂo T (2;+l) 1 Pv(cose) 29
r W(v)

for r > b.

The above series converge so slowly that numerical evaluation,’éven
by means of a digital computer, is not feasible. The Watson transforma-
tion, reviewed in Appendix A, is commonly applied to these series. The
well known result is

(v, + %)g(b)fl(r) va(-cose)qu

W (v,) (simm_) 30

F =3
r
S

for r > b. Here W'(vs) is defined by
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e = .d_. 7
o) = T He, L 31

and the numbers v, are defined by

Wilv ) =0. 32

Note that vy is now complex, since the above series results from
integration on the complex v plane. The approximation is commonly made

that

Pv (~cos0) 2.

d
s _ 1/2 . 1
sin T - _[n(vs+l) sine] exP[J(\)s+ 2)6] 33

From physical considerations, Vg nust have a positive imaginary part to
give modes which decay with increasing 0. Only those eigenvalues, Voo

with small imeginary part need be considered for the diffraction, or beyond-
the-horizon zone, since other vs's correspond to highlv attenuated modes.
The functions f and g5 are both dependent on tne eigenvalue Vg

The series representation for E, can now be formed using Equations

%

30, 33, and 21, The exponential denendence on 0 dominates the derivetive,

so that
we (v )2 2(0)f. (r) 2 1/2
" " s+1/2° ~ 1 3 .
B =% [ —] exo[j(v o]
2 2 W'(“s) w(vs+l) sind s+1/2
for r > b. ' (34)

It should be noted that multinplication of the functions g and f by
non zero constants will still allow them to satisfy Equation 17. In
addition, the above series will be unchanged by such scaling factors, due

to the function W'(vs).



1h

-t -
To insure the continuity of tangential components of E and H at the
ar
surface r=a, one must require the continuity of Fr and —= at r=a.

dr
The eigenvalues in Equation 34 must be identical with those in Fouation
19, since the 0 dependence of Fr must be the same above and below the
surface r=a, Eguation 30 , with the arguments of f and g interchanged,

forms the function Fr for a < r < b. The boundary condition on ¢(r) then

becomes

d e d ;. 1/2
ar _a T Tonypthr)] 35
& 25 (k.r)
r=a v+l/2' 71 r=a

The series for Fr involves values of v for which the VWronskian

vanishes., When this occurs, the functions f. and g are identical, except

1

possibly for some multiplicative constant, The function g can then he
replaced by £ in Eguation 35 . It is also customary to use the asymptotic

or large argument approximation for J (klr), to give the final form

v+l/2

for the boundary or eigenvalue equation as

.7/dfl S ——-——"("J’l))l/2 ) 36
dr, 1 2
f a
1
r=a

For the special case in which the conductivity of the earth tends to

infinity, the wave number k., becomes unbounded, and the eigenvalues are

1
those which allow f to satisfy

f(a) =0 . 37
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III. SPECIFICATION OF THE PROTFILE

The dependence of € on r will now be specified. An exponential
dependence of refractive index on height above the surface of the earth

has been frequently suggested as cheracterizing a stable, uniform atmos-

phere (1,1L4). This can be written as

38

n=1+ (no-l)e—Ch

where n is the index of refraction, n, is the surface index, c is a con-

stant parameter, and h is the height defined by

r=h+a, 39
It is then true that
n° =1+ 2(no-1)e‘Ch + (no—l)ee—QCh , 40

Since (n -1) takes on values on the order of 10 , the second exvonential

can be neglected. Equation 1T then becomes, in terms of the indevendent

variable h,

A A
£2 4 [k + 26%(n -1)e™ R - lilﬁi%qs =0 b1
dn” ° © (h+a)

Now define Y(h) by writing the above equation as

9-5 + Y(h)B = 0 ko
dh

Wo rigorous, exact solution has been found for Y(h) as written above
(14). The Langer asymptotic solution, whose derivation is outlined in
Appendix B, is felt to be the best possible apvroximate solution (23) and

has been used in attempts to draw general conclusions about wide classes

of index profiles (12,23).
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To complete the Langer solution, Y(h) must be a function of h whose
square root can be integrated without undue difficulty. A quadratic func-
tion of h meets this requirement, and can be obtained by generating a

three term power series for e—Ch and for The quadratic form of

-
(h+a)?
Y(h) which results can be used for h on the interval [0,%], while Y(h)
assumes its free space form for h > 3/c. The surface h = 3/c is then a
ay(h)

boundary between the troposphere and free space. If Y(h) and o are
made continuous at h = %3 the boundary there will be a fictitious one and
no reflected wave from this boundary need be considered. The procedure
outlined here will now be cdeveloned in detail.

The function e-Ch is aporoximated by 1 + th + §h2. iThen one requires

this quadratic to have a zero value and a zZero derivative at h = 3/c, Iy

and B become

- 2c
A= - — h
3 3
3 2/ N
= . 4
€79
The function —-—l-E-can be expanded in a power series as
(h+a)
1 1 2h | 3n°
7= -5 ¥
(h+a) a a

Therefore, for 0 < h < 3/c,

Y(h) = Y(h) Lé

where
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Z . 2 .2 v(v+1)
Y(n) =k < + 21;0 (no-l) -
2
be k “(n -1)
+ h[- o o . 2v(v+l)] W7
3 3
a
2.2 2 2 3v{v+l)
+h [-9- ¢ ko (no-l) - ":h_"] .
50 one can write
T(AT = k °[an°
Yh—ko[!\.n + Bh + C] 48
where
_2 2 3v(v+l)
/\-9c(no-1)-12+ Lo
{O a
. _ 2vu(v+tl) 4
B = =l _ = c(n -1) 50
k 23,3 3 °
O
_ v(v+l)
C—l+2(no-l)-———-—22 . 51
ko a
Y(h), for h > 3/c, is given by
¥(h) = k02 - l’-(-‘-’:'—l% = Yo(h) 52
(a+h)

Y(h) is thus discontinuous at h = g-by a small amount egual to the error

v(v+l)

5 at h = 3/c. Since this error is
)

in the three term expansion for
(a+h

more than three orders of magnitude smaller than the constant C in YTET,
it will be neglected, and these functions Yo(h) and Y(h) will be assumed
continuous. The first derivatives are likewise essentially continuous.

It will then be true that the Taylor Series expansion for Yo(h) about

h = 3/c and the series for Y(h) abouyt h = 3/c will have identical first

and second terms. The solutions to
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2
Q—%+Yo(h)}3=o 53
dh

and
dzB
— YZh; B=20 54
dh2

are therefore identical, except perhans for a constant multiplier, for h

on some interval including h = 3/c.
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IV. THE HEIGHT GAIN FUNCTION

The Langer solutions for the differential equation

2n
a8 2 A
Zh—2+k° (a(h)) B =0 25
take the form
1/2
eo= B a M) 56
1/2
r, = [g(i)] Hl/3(2)[u(h)] : 57
Q(nh) ana hl are defined by
Q(h) = ko(q(h))l/z 58
and
q(hl) =0, 59
and u(h) is given by
h
u(n) = fkoq(h)l/zdh 60
b

In using the Langer solution, one adjusts the parameter v after the
’solution is formulated. The dependence of ¢ on v can be seen by comparing
Equations 55 and 17 . The particular values of v which satisfy the
boundary conditions imposed are the values V. For the Langer solution
to be valid, it must be true that for each v_, k2|y'(hl)l exceeds some
large constant. In addition, it must be possible to extend the definition
of q(h) to complex values of h on some region including the points hl
mentioned above. Such an extension is not difficult for the case studied

here, and the condition on y'(h) is satisfied for smooth, monotonically

-
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decreasing profiles.

tive

that

tion

real

tion

Under the above hypotheses, q(h) has a root whose real part is posi-
and bounded from zero when h is real and positive. It is understood
this root is used in Equations 58 and 60 . The path of integra-
extends from hl to some point on the real axis and then along the

axis to h. The real part of u is then an increasing function of h.

The Langer solutions for Equation 54 will be developed. The func-

fl appearing in Equations 30 and 34 will be given by
1/2
_ ru(hn) o (1)
0 =G s e 61

for 0 < h < 3/c, and by

1/2
_ ru(3/c) - (1) (3
£ = [QZ3/c5] H1/3 [u(c)] y (l)(k ) 62
(1) Tvtl/2 of
H\)+l/2 (ko3/c)

for h > 3/c.

of v.

The constants A, B, and C will now be evaluated for complex values

It is known from previous work (14) that the real part of v will

be approximately equal to koa. Since Iv| is large compared to unity,

v(v+l) o v2 63

The real variables o and B will be defined by

v = koa +a+ jB . 6h

Then the followings relations can be written, keeping only the dominant

terms:

2 2 .
Vo= (koa) + 2k aa + 2jBk a 65
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- 2a 2B
Cc = 2(no-l) - '}-{-—a' - Jk a 66
(o]
R R e 67
a 3 X a
(o]
_2 2, 3 .68
A = 5 C (nO 1) = Jk 3 . 68
(o]

By consideration of the typical values of c, n, and ko, and anticipated
values of B, it is found that

ReA . .6

and
ReB . .. L
o8 =10 TO

A and B will therefore be taken as real varameters describing the trono-

sphere. The relations

- 20
co = 2(no-l) - = T1
(o]
and
_ 28
Cl "k oa 72
(o]

will arbitrarily define the real variables Co and Cl' This will require

that

C = CO - JCl 13

The root of Ah2 + Bh + C closest to the origin will now be found.

n =B % (82 - uac)t/?

1 24

Th
hacy1/2,

B2

(E(- 1+ [1-

Substituting for C under the radical yields
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hac hac, 1/2 hac Lac 1/k LAC
1-—=2+i— = [1-—=2+ (=71 Q+i—3) 75
B B B B 2B

Now make use of the relation that, for small e,

[1+e]l/h=1+1€7 76
haC hAC 1/k 2AC AC AC
[(1-—=2)2 4+ (—2)2] 2 1-—L4+1(—2)2+ 1(—2)2 7
B° B2 B2 B2 B°

After some algebraic manipulation the result is

C 2AC
2 2 1 0 '
C -
Co * ‘1 )+ j—iﬁl g2 ) 78

CO
hyr--g+

w o
L

The root h., is thus seen to lie close to the root ~C which would result

1
3
if A = 0. In the following integration, hl will be taken as
C c
_ 0 .1
by = -+ I3 9

Of concern here is the integration designated in Equation 60 , from

the root hl to some point h on the real axis. This integration on the

complex h plane will be carried out, for simplicity, alonz two recti-
linear paths. Path one extends from the root hl to the real axis, while
path two leads zlong the real axis to h. This integration path is shown
in Figure 2.

Of particular interest is the integration to the origin, since the
resulting function u(0) will be involved in the eigenvalue equation for
the perfectly conducting earth. It is easily seen that Cl is a positive
number, since‘the attenuation of each mode with 6, or distance, goes as

-88

e s, where s is the mode integer. It is of interest to inquire into
J

the sign of Co'
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In(h)
hl
f path 1
h
path 2
Figure 2. The path of integration for u(h)

Re(h)
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it CO is positive, the root h, lies in the second quadrant of the h

1
plane. As h takes on values slong path one,[;\.h2 + Bh + é]has a negative
imaginary part. Then [Ah2 + Bh + C]l/2 moves along some contour in the

second or fourth quadrant, depending on which square root is chosen. TFor

example, suppose the root with the positive real part is taken. Then write

5 o )
path f[Ahe + Bh + c]l/‘dh = f wo (x)jax-j f v, (x)jax 80
one c/B 1 ¢/B 1
1 1l
where wl(x) and vl(x) are non-nzgative functions of the real variable x on
C
the interval [O,—EJ. Then T, and T1,, defined by
c,/B
1 -
j.wl(x)dx =1 81
and
Cl/B
= 2
jﬁvl(x)dx T, 8
0
are non-negative numbers.,
pathg 2, o Ve, _ .
one [An Bnh + C] dh jty -1, 83

The choice of the square root with a negative real part along this path

gives a similar result; with opnosite sign. ©So one can write

Pathf [an° + 3n + ¢1¥%an = + (¢, + 1) 84

one 2 1
[

Along path two, h is real and [Ah + Bh + C] again has a negative

imeginary part. liere the square root with a positive real nart must be

taken, since it is necessary that u(h) be an increasing function of h for
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large h. The root [Ah2 + Bh + C]l/2 therefore lies in the fourth aguadrant.

o )
df[AhQ + Bh + 0]1/2 .f[wz(x) - jvg(x)]dx 85
-C —C

B B

where w2(x) and v2(x) are non negative functions of x. Define T3 and 1)

by
o)
_fwe(x)dx =1 86
-C
2
B
o
v (x)ix = 1, , 87
S .
2
B.

where 1, and T), are non negative numbers if Cois positive as assumed. It

3

is then true that the integration over path two rives

]1/2

S[Ah2+Bh+C an = 1, - JTy, 88

The boundary condition at the surface of the perfectly conducting earth
requires that

T

89

~la

+ (12 + jrl) + Ty - ity =-
as will be shown later, where Tg is a positive resl number, This equa-
tion cannot be satisfied for either choice of sign.

if Co is chosen to be negative, integration alonsg path one is
essentially unchanged. For h real and on path two, integration is in

the negative h direction. The numbers 1. and T, still defined by Equa-

3

tions 86 and 87 , are then both negative, and the above eguation can

be satisfied by the choice of the lower sign.
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The integration necessary to form u(h) is oresented in Appendix C.

The result is

uéh) - [EAEXB] [an + Bn + ¢]/2
(o]
. hAC-Bg Lop 2Al/2 [Ah2 + Bh + 011/2 + 2Ah + B
ga32 12, . 1/2 A
oA~ “[=3¢.] -——+ B
1 B
2AC
B(1 - —2) (—jcl)l/2 032 5. 302
. B 1 1
- — -3 - 90
2B 8 2B

The evaluation of this function for h = 0 is also accomplished in Appendix
/

vc.
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V. THE EIGEEVALUES FCR THE PERFECTLY CONDUCTING EARTH
For the perfectly conducting earth, the eigenvalue equation is given

by Equation 37 . Written in terms of the Langer solution, this becomes

Hl/3(l)[u(o)] =0 91

The eigenvalues v, are those values of v for which

u(o) = - 92

where T, are defined by

(1) _
Hl/3 (-Ts) =0 93
The two transcendental equations in Co and Cl thus are written
Re u(o) = T ' ol
and
Im u(o) =0 . ' 95

From the results of Appendix C, the above relations become

-D2 D2cos2 g- D3cos % hD3cos3 g
+ + -
hAl/Z 2A1/2 B 3B
Y .Y
_C0 . CoD 0052 _'ClD s1n2 ) iﬂi o6
hAl/2 B B ko
and
3/2 2 .. ¥ ¥ y
Cl ) Cl ) D sin 5 cos > ) ClD cos >
wi’? 2 fom opl/2 B
CoD sin %
_-———B-——-—-= 0 . 97

D and ¥ are defined by the relations



1/k4
o 2 2 _ 1~1/2
D=(c+c") = |c™ 9 98
and
_Cl
Y = arc tan T 99
(o]

The technique for finding eigenvalues Vg for Equation 3% is to
choose values for A and B which describe the profile to be analyzed, and
solve Equations 96 and 97 simultaneously for Co and Cl for each value

Toe The values of Co and C, then determine o and 8 by Equations 71 and

1
72 . The first four values of Tos to three places, have been civen by
Bremmer as 2.38, 5.50, 8.60, and 11.73.
Figure 3 presents the locus of points (Co’cl) which satisfy Equation
97 , and the loci of solutions to Equation 96 for two typical values

T

of —% . As s takes on the values 1,2,3,..., for a given frequency, the

curves intersect at increasing values of C The voints of intersection

l‘
give the eigenvalues o and Bs. For a given integer s, the intersection

occurs at smaller values of C as ko increases. The value of 8 increases

1°
with increasing frequency, however, due to kquation T2 .

The attenuation parameter Bl for the first and strongest mode has
been plotted versus frequency for several choices of (no-l) and ¢ in
Figure 4. The work of Post (28) indicates that the initial value of the
gradient of refractive index is substantially more important as a para-
meter than the scale height. Therefore o has been given values for Fig-
ure 4 which match the initial gradient of the present model to those which
are typical in the atmosphere. The upver curve gives Friedman's result

for the corresponding variable. This curve is nearly independent of the

parameters ¢ and (no-l), and indicates that Friedman's first mode is much
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Figure 3., The loci of solutions to the transcendental enuations
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more highly attenuated throughout the freaquency range of interest.
Appendix D shows how Iriedman's exnression for B can be found as a svecial
case of the present model.

It should be noted that the first mode is dependent on distance along

8le, where 6 is the angle away from

the earth according to the function e~
the source. A lower value of Bl means a slower decay of the field strength

versus distance. It can be seen from Ficure U4 that en increase in (no—l),

or in c, or both, results in a smaller Bl and stronger diffraction fields.
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VI, THE COMPLETED SERIES FOR E¢
To complete the series for the electric field, the factor W'(vs) nust

be evaluated for this particular profile.

2
af 2 of P f
wv=_l§-_€§_+f 3 g_%__l_g 1 100
v or 1 3vadr ov or dvar

If the wave number of the earth dominates the right hand side of

Equation 36 , it must be approximately true that

dg .
2_ ar | - . 101
v g

r=a

Then the factor W' assumes the customary form (12)

2
af of o T o
. 1 1 1
e = et et - T
i (vs) v dr "1 3vdr 102
=g r=s

where fl is now treated as a function of the two independent variables v
and r. The above relation is adequate unless the earth is taken to be
poorly conducting.

For the case of the perfectly conducting earth, Equation 102 simpli-

fies to

W'(\)S) = —= —=| y=vy 103

The expression 103 can be evaluated using the form for Pl(r) already
developed. Iliowever, the resulting series for Egdoes not lend itself to
numerical evaluation as well as an alternate method due to Friedman (12).

Suppose that the earth is a good, but not perfect conductor. Then

sguation 102 can be written as



3/3r £
_— 23 1
o= (fl) = ( fl ) 10k
r=a
= [fl (a)}2 105

where ¥ is defined by the last equation. Triedman has found an approxi=-
mate value for M by an involved nrocedure that will only be outlined here.

To proceed, it must be recognized that the dominant term in the expression

af
mfl involves the funection
(1)
2x) = &3 | 106
— (1)
iy (x)

Only this dominant term is saved. Then, by examining the equation satis-

(1)

fied by Hl/3 (x), it is found that Z(x) satisfies the Ricetti eauation
PSS
A I i A R S 107
X 3
Ix

Therefore, for larce x,
71 A , 4
Z»v'l-z-'—- 108
X
When the differentiation with respect to v is verformed in Lguation 10L ,

7' is eliminated with the above equation, and Z is eliminated by Lquation

36 . The result, when the earth is a good but finite conductor, is

2
k 2
M= _l_ (1 - .IS_E‘_).) 109
k 2
o) kl

where k(a) is the surface wave number, The use of this approximate formula
is probably justified if, as in the present study, the variation of field

strength with distance is of prime importance.

-
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The series for E, thus takes the form

¢
E =73 wu(vs+l/2)2 fl(b) fl(r)
¢ ok 2 A N
sk 2 1 1
...l]{‘_.(l - k (g))rQ
kl
: 1/2
A7 Ei) sin%] exp[j(vs + %)0] 110
s

The results of the present analysis have been compared with other

results by computing the ratio of field strenpgth E, to the free space

¢
field strength which would result in the absence of the earth., This
ratio has been expressed in decibels and plotted in Figures 5 and 6 for
two choices of frequency. Curve 1 indicates the result computed by Post
(28) for a linear atmosphere, while curve 3 indicates the first normal
mode as given by Friedman, Curve 2 renresents the field as written in
Equation 110 . PFriedman's formula gives a highest attenuation through-
out this range of frequencies. Above about 412 mepacycles per second
the field strength of the present method suffers somewhat less attenuation
than that of Post (28).

Experimental field strength measurements at 190 megacycies per
second are presented in Ghose and Albright (16) which were taken during
periods when meteorological stations indicated a uniform linear gradient
of refractive index along the 127 mile path. £&n attenuation of about
3/4 decibel per mile was measured. This agrees well with curve 2 in
Figure 5.

In Figure T, attenuation in decibels of the field strensth is plotted

versus the initial or surface value of the gradient of refractive index.
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Curve 2 represents the results of the present study, while curve 1 gives
the attenuation predicted by Post (28). Curve 2 is plotted for n-1=

4 x lO-h and ¢ changes as

dn(o) _ 2
i = - §(no—l)c . 111

The selection of fregquency and distance given in Figure T was made so
that these curves could be compared with similar experimental measurements
reported by Ghose and Albright (16). The dotted line in Ficure 7 indicates
the experimental data. Only the slope of this curve is significant since
absolute field strengths were not reported.

The agreement with experiment that has been discussed is thought to
be particularly significant in view of the fact that the data was taken
when meteorological instruments indicated that the actual profile was

comparable to this model,
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VII. COiECLUSIONS

The classical or normal mode solution for electromagnetic wave
propagation around a spherical earth can be found for the particular
profile of refractive index which is described by a quadratic function.
The inclusion of the quadratic term in the vrofile description alters
the dependence of the Langer solution on the parameter v. The careful
solution of the boundary value problem for this profile results in eigen-
values which differ significantly from the values obtained for the homo-
geneous atmosphere,

The dependence of the eigenvalues on frequency is essentially un-
changed from the homogeneous case. The eigenvalues, and hence the dif-
fraction field strength, show a marked derendence on the surface value
of the refractive index and its gradient. An increase in the surface
refractive index or in its initisl gradient effectively increases the
diffraction field strength. The denendence of field strensth on the
initial gradient of refractive index, predicted by this analysis, agrees
with the results of other investigations and with corresponding experi-
mental data., Attenuation of field strength with distance, computed by
the present method, is in good asgreement with experimental measurements
taken under meteorological conditions which suggest a meaningful

comparison.

i



10.

11.

12.

13.

40

VIII. BIBLICGRAPIY

Bean, B. R. and Thayer, G. D. Models of the atmospheric radio
refractive index. Institute of Radio Engineers Proceedings.

b7:740-755. 1959.

Booker, H. G. and Gordon, W. E. A theory of radio scattering in the
troposphere. Institute of Radio Engineers Proceedings
38:h401-k12, 1950.

Bremmer, H. On the theory of wave propagation through a concentrically
stratified troposphere with a smooth profile, expansion of the
rigorous solution., National Bureau of Standards Journal of
Research 66D:31-52. 1962,

Bremmer, H. On the theory of wave propagation through a concentrically
stratified troposphere with a smooth profile. lational Bureau of
Standards Journal of Research 6L4D:467-482. 1960.

Bremmer, H. Terrestrial radio waves. Iiew York, I'.Y. Elsevier
Publishing Company, Inc. 1949,

Budden, K, G, Radio waves in the ionosphere. London, England.
Cambridse University Press., 1961.

Budden, K. G. The wave-guide mode theory of wave pronagation.
Englewood Cliffs, liew Jersey. Prentice-lall, Inc. 1961.

Bullington, K. Propagation of vhf and shf waves beyond the horizon.
Institute of Radio Engineers Proceedings 38:1221-1222, 1951.

Carroll, T. J. and Ring, R. M. Twilight resion propagation of short
radio waves by modes contained in the normal air, Massachusetts
Institute of Technoloegy Lincoln Laboratory Technical Report
TR-190. 1958.

Duhham, J. L. The Wentzel-Brillouin-Xramers method of solving the
wave equation. Physical Review 41:713-720. 1932,

Feinstein, J., The role of partial reflections in tropospheric
propagation beyond the horizon. Institute of Radio kngineers
Antennas and Propagation Transactions AP-2:9-27., 1952,

Friedman, B, Propagation in a non-homogeneous atmosphere. 1In Theory
of Electromagnetic Waves: a Symposium. pp. 317-350. New York,
H.Y., Interscience Publishers, Inc., 1951.

Furry, W. H. Theory of characteristic functions in problems of
anomalous propagation. !Massachusetts Institute of Technology
Radiation Laboratory Report 680. 1945,



1k,

15.

16.

19.

20

21.

22,

23.

2k,

25.

26.

b1

Gerks, I. H. Introduction to the problem of propagation in a
stratified atmosphere over a spherical earth. Unnpublished
multilithed memorandum. Cedar Rapids, Iowa. Collins Radio
Company. 1963.

Gerks, I. H. Propagation at 412 megacycles from a high power
transmitter, Institute of Radio Engineers Proceedings

39:1374-1382, 1951,

Ghose, R, . and Albright, W, G, Vhf field intensities in the
diffraction zone. Institute of Radio Engineers Antennas
and Propagation Transactions AP-2:35-38., 1954,

Harrington, R. F. Time-harmonic electromagnetic fields, ilew York,
#.Y. McGraw-Eill Book Company, Inc. 1961,

Harvard University Computation Laboratory Staff, Tables of modified
hankel functions of order one-third and their derivatives.,
Cambridge, Mass. Harvard University Press. 1945,

Lerr, D. ., ed. Propagation of short radio waves. Lew York, .Y,
l{cGraw=-iiill Book Co., Inc., 1951,

Langer, R. E. Asymptotic solutions of a differential equation in the
theory of microwave propagation. In Theory of Electromagnetic
Waves: a Symposium. op. 73-84. lHew York, ii.Y. Interscience
Publishers, Inc, 1951,

Langer, R. BE. On the asymptotic solutions of differential equations,
with an application to the Bessel functions of large order.
American Mathematical Society Transactions 3k:L47-480. 1932.

Megaw, E. C. S. The scattering of Ell waves by atmospheric turbulence.
Nature 166:1100-1104. 1950,

Horthover, F. H, Long distance vhf fields. Canadian Journal of
Physies 33:241-256. 1955.

Ortusi, J. The various theories on the propagation of ultrashort
waves beyond the horizon. Institute of Radio Engineers
Antennas and Propagation Transactions AP-3:86-91. 1955.

Panofsky, W. K. H. and Phillips, I, Classical electricity and
magnetism, 2nd ed. Reading, Massachusetts, Addison-Vesley
Publishing Company, Inc. 1962.

Pekeris, C. L. Asymototic solutions for the normal modes in the
theory of microwave propagetion. Journal of Applied Physics
17:1108-112k, 19L6,



we

27.

28.

29.

30.

31.

32,

33.

3k,

35.

36.

k2

Pekeris, C, L. and Ament, W. S, Characteristic values of the first
normal mode in the problem of propagation of microwaves
through an atmosphere with a linear-exponential modified index
of refraction. Philosophical Magazine 38:801-824. 1947,

Post, R. E. The flat-earth approximation to the solution of
electromagnetic propagation in a stratified terrestrial
atmosphere., Unpublished Ph.D thesis., Ames, Iowa. Library,
Iowa State University of Science and Technology. 1962.

Rayleigh, Lord. The problem of the whispering gallery.
Philosophical Magazine 20:1001-100k, 1910,

Schelkunoff, S, A, Llectromagnetic waves, Princeton, iew Jersey,
D. Van Nostrand Company, Inc. 1943,

Schelleng, E. B., Burrows, C. R. and Ferrell, E. B. Ultra-short-
wave propagation. Institute of Radic Engineers Proceedings

21:427-463., 1933.

Stratton, J. A, Electromegnetic theory. ilew York, N.Y. McGraw-
Hill Book Company, Inc. 1941,

van der Pol, B. and Bremmer, H., The propagation of radio waves
over a finitely conducting earth. Philoscphical:-Margazine

25:817-834, 1938.

Wait, J. R. Radiation from a dipole over a stratified ground.
Institute of Radio Engineers Antennas and Propagation
Transactions AP-1:9-12, 1953,

Weit, J. R. Review of mode theory of radio vnropagation in terrestrial

waveruides. Reviews of Geophysies 1:481-505. 1963,

Vatson, G.‘N. The diffraction of electric waves by the earth.
Royal Society of London Proceedings Series A, 95:83-99. 1919.



L3

IX, ACKHNOWLEDGEMENTS
The author wishes to thank Dr. R. E. Post and his major professor,
Dr. R. M. Stewart, Jr., for many helpful suggestions during the prevara-

tion of this thesis.



LY

X. APPENDIX A

Watson (36) considered a series of the form

_ ® on+l b
S = i (-—??—) a_ ~n(cose) 112

and showed that it could be represented as the integral

(t + 1/2) a, P, (~-cosb)
I= l. -( bt .t dt 113
2 C sinmt

where C is a contour which starts at =« - j§ on the t plane, goes below
the real axis to t = - 1/2, and returns above the real axis to = + j§,
as in Figure 8,

If a, and Pt(-cose) are analytic functions of t, the singularities
of the integrand occur for those real values of t inside C for wvhich

sinmt vanishes., Then I can be written as a sum of residues

. o(n + 1/2) a Pn(-cosa) .

Tcosnw

%' (n + 1/2) aT_(coss) 11k

O ™M 8

When this procedure is applied to Eguation 29 ,

+ =(b)f P (-cosb
oL wu‘g (v + 1/2)z(v) l(r) v( cosh) N s
r T o rwv sinmv

On the part of C below the real axis, designated hy C1 in Tigure b, v is

replaced by -v-1, so that C, is transformed into C_, and

1 3
(v + 1/2)g(b)f. (x) P (-cos8) dv
r = Wy 1 —-v=1
r I & W,y sSinmv
3
on j' (v+ l/2)g(b)f1(r) Pv(-cose) dv
T ; CR sinmv 116

2

The contours 02 and C3 are now rotated upward until they enclose the

positive half of the line given by



In(t)

Re(t)
- 1/2

Figure 8. Contours of intepgration for the Watson transformation
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Re\)=--:-L- 117
2
As the contour is moved in this menner, it may pnass over some noles of
the integrand. Then Fr can be expressed as the sum of the residues at
these poles, plus two integrals over the line described above. Put

V= - % = j1, so that

oo

TP, (-cosH)
- . wu jr=1/2
Fr L residues + Tr j’ oshnT X
g(b)f (r) e(b)f. (r)
1 1 R 8
7 TV dr 11
jt=1/2 T Uejt-1/2

Friedman has shown this integral to be zero when the earth is nerfectly
conducting, and small enough to be droppved when the dielectric constant
of the earth is large compared to the surrounding medium.

The poles of the original integrand are at those values of v for
which W = 0., Then the residues at these noints v, can be written

o (vs + l/e)g(b)fl(r) Py, (~coso)

Fo= 2 = . 119
r L :
s r ¥ (vs) (51nnvs)

This brief explanation of the Watson transformation is due mainly to

Bremmer (5) and Friedman (12).
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XI. APPENDIX B
It is desirable to vresent a brief discussion of the Langer asymptotic
solution for a particular ordinary differential equation, It is important
that the symbols used to define functions and parameters in this section
should not be confused with those in the remainder of this thesis. The

notation follows that of Langer (21).

The differential equation to be solved has the form

u"(z) + [02¢2(Z) - X(z)Ju(z) =0, 120
where X(z) is assumed to be an analytic function in the region of interest

R. The coefficient ¢2(z) is of the form
4°(z) = 2°65(2) 121
where v is a real non negative constant and ¢i(z) is a single=valued

analytic function bounded from zero.

How define

Z
$ = !q)(z)dz 122

where the integration is performed on a Riemann surface which is appro-
priate to a single-valued representation of ¢#(z). The intesral is then

independent of path and has the form

v/
+
5=z L @l(z) . 123
with @l(z) single-valued and analytic in R and ¢l(o) # 0.
Define u by
_ 1
L 124

and ¥(z) by



48

1
¥(z) = (6(2))°" 125
¢(z)l/2
It
£ = pé(z) ’ 126
and
y(z) = ¥(2)be, (e) | 127

where C*u is a cylindrical function, y(z) satisfies the related equation

y"(2) + {p%°(2) - w(z)}y(z) = 0 128
where w(z) is analytic and single-valued. The technique now is to show
that the solutions to 120 are expressible in terms of y(z). The cylindri-

cal functions to be used are liankel functions, so

5o, H
- 1
yk’j(z) = ' 129
W£Z) M ox (3'1)(ge'k"3) , k odd,
Jhys H
where
1/2
A, = (B etletEmi, 130
1 ™
By defining
8(z) = X(z) - w(z) , 131
Equation 120 becomes
" 22 '
u"(z) + {p7¢°(z) - w(z)lu(z) = 6(z)u(z) . 132

The solutions for u(z) then are



1 Z
w5 (2) = 7y 4(2) + =20 Hyk,lmyk’e(zl) - Vk,2<z)yk,l<zl)]

X e(zl)uk’i(zl)dz1 133

Langer has evaluated the integral above as a series of terms involv-
ing p—n, where n is the number of the series term. An examination of the
convergence properties of the series shows that, for large p, the sum goes
to zero. The solutions uk,i(z) go asymntotically to yk’i(z) as p becomes

large.
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XII. APPEIDIX C

To complete the integration for u(h) along path one, make the change

of variable

-C
_ o . .
h = = *fix. 134

Then one can write

> - 2AC A002
Ah® + Bh + C = x“(-A) + x(jB-j=—=2) + C - C_ + 135
3 o 32 .
It is approiimately true that
ACO2
- ——— N\ o}
C CO + 52 A JCl . 136
AC 2
since Cl is much larger than the anticipated values of Z . :ow define
B

the parameters i, i, P by the relations

M=A

2ACO
i = =3B(1 = ——=) 137
BC
P o= +j
(]Cl

and note that

dh/dx =3 . 138
Then the integrand can be expressed as

[Ah2+3h+c]l/2 = j[Nx2+Hx+P]l/2 . 139

The root on the left is to have a positive real nart, so that the root on
the right, above, rmust have a negative imaginary nart., The intesral then

becomes -
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~ (@]
zzzh S [An2+3nec] Y/ 2an = j 3 [acPerer] 2 ax 1o
..
1/3

C1/8

]
[1ix"+ix+P] 1/ ?'dx

141
o

It can be determined by differentiation that

f D] 2ax =

A+l
[ZJXMU] [Hx2+ﬁx+P]l/2

hHP-lfz

)1/2
g3/

o
Lo,q[zzzl/ "(I-'Ix2+1-1x+P + 2ix + K] . 1k2

In this enalysis, Log will designate the logarithm to the base e of a
complex number, while log will indicate the logarithm to the base e of a
real number,

At the upper limit of expression 1kl , Mx2+Nx+P vanishes, by defini-

tion., The integral in Zouation 141 then becomes

C
1/B o 21C
S [f-1x2+.1€x+P]l/2dx = (—‘E-g-l/‘-;) Log[r—ﬁi + 1]
o &>’
upl/2 (h'CP-"-Ig) 1/2,1/2,;.q L
- - (=== Log[2M™/ P~ “+i 143
X & ’
Tit 8I-'f372
1/2 . "
where P must have a positive real rart.
. 1/2 /2 ,-1 1
yc, 142 = ¢, -0 14
2 . 2

If the logarithm functions are combined as the logarithm of a quotient,

the numerator and denominator of the argument can be divided by #. The
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integral can then be written as

C

1/3 .2 2MC
= S - SO - 1
OS [Mx +hx+P] dx [W] Log[l + R ]
‘ i T
_1/2 sc. Y2 g2 1R g1/
WP - L 1 . 01 o'l
- = + + - 146
’ Lo2a b o2a 2 2B 2 2B
Using Equations 137 ,
5 hAco
5 dhacy + 37(1 - —57)
UIP=K - B~
gr3/2 85372
C e C
1 3 0
= § = + = - — 1h7
optf2 gp3/2 5,102
To evaluate the first logarithm in Equation 145 , write
1 A
2I.Cl . Q“Cl
BI\T = J 2 lh8
] 3
lNow note that, if x and y take real values,
Loz[l + x +.jy] = % log|l + x + Jy 2
+ j arc tan —— 1k9
1+x
_ 1 2 2 :
= E-log[l +2x +x~ +y°] + jarc tan (y - vx), 150

where only two terms have been included in the arpgument of the arc tan

function. Therefore, it is true that

2MC hA2c 2 2AC

1,1 1 .
Logfl + = ] = 5 log(1l + ——;?I——) + j arc tan 7z - 151

Using the series
x2 x3
lO,lZ(l'f'x) =X =- E- + T T e 152
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for x < 1, it is found that

wPc ®  uac
log(l + N )= — + higher terms 153

B B

It can be determined by investigating the orders of masnitude of the
terms involved here that quantities involving B to the fourth power,
or higher, in the denominator, can be neglected. In addition, the argu-

ments of the arc tan functions in this appendix are generally less than

0.05, so from the series

3 5
Lo X 2X
tan x = x + R + 15 + eee 15k

it can be seen that arc tan 86 can be epproximated by 6, with negligible
error. Therefore one can write

2mcl] . 2AC,
i) T .
D

Log[1 + 155

To evaluate the second logarithm in Equation 145 , use the relation

2Ml/2p1/2 .{2AC1 . 2ACo ’2ACl 2ACl 2ACO 2ACl
- T -dJdTg—-d 3 3 + 3 156
3 B
Using the relation 150 for the above expression, let
]QACl 2ACo 2ACl
X ===+ 3
E
x2 ) 2ACl
Y
= 157
.. J2AT, 2ACO\,2ACl
B B3
2 _ =
Yy =X = -yX .

The result is
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ok/2p1/2 2)2ac;  bac 52 AC,
Log[l + ____._....] = ]_og(l + + +
i 3 3 e
3 B
2AC (2Ac
. 0 1
+3 (- - + ) 158
B 3 52

Equation 152 can be used to evaluate the log function, to yield

o 2 ‘ {
2‘”1/2 1/2 B ;_AC1 . ;ACO 2ACl 3ACl 2ACl
= -

Log[1 + ]
83 op3

+ij(-==- =3 + —5 159
B B
tow define A by
24C; ot/251/2
= Log(1l + 7] - Logll + =——x—] 160
Combining Equations 159 and ~155 gives
s 2AC, ) 2AC l 1 34C; { ACy
B 2T3
2iC anc_ [2ac
R 161
B 33
.- c, C, JéAc JéAcl
(—=ls=0( ==, - —,,)(- + § =)
am3/? opl/2  ppll2 B 2
(o) \
52 . 2AC, ) 2AC_ § 2AC, . 34C, [2Acl . ;IQACl
3/2 B 53 033 © B
2AC_ § 2AC
+ --—-?;——-—) 162
B

In the above relation, the smaller terms have been deleted from & in the
first product. Combining Lquations 162 and 146 in 145 | all but two

terms cancel to give
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3/2 5C 3/2
pathj/[Ak ssnec]H2an = - e o i . 163

one JE% E3JE.B

The integration along the real axis (path two) can be accomplished

in the same manner. Using expression 142 , one obtains

f Ah +Bn+C] 124y [2é%ii][Ah +3 n+c]l/2
-_2
L'AC-B2 l/Q(Ah‘+“n+c)l/2 + 2Ah + B .
(——?/?) LO;, SHC 16h
o} - 4
SA 1/2(_ ic, )1/2 -
D
2AC
4 . \1/2
B(1 - —=2) (e
TJ
- Ip
This functior will now be evaluated for h = 0.
2AC
[£h"+3h+C]7 “dn = Ir - 3
-C) = La
= . 165
o]
JRLTTR LOF[2A1/2 12 e - (hAC—Bg) rorl1 2kC, . op1/2
‘ . \1/2
(-JCl) ]
1/2 1/2

Since [Ah2+3h+C] should also have

is to have a pcsitive real part, C
a positive real vart wherever it avpears in Laquation 165 . This root of

C can be expressed as

M2 = b(cos £ -5 sin %) 166

where D is defined by Louation 98 and ¢ is defined by



-C
arc tan T
o

("):
Therefore

- 1
BC1/2 3D cos

!
8D sin %

¥
2
Tan T T LA

3 2AC_
- (1 - —(-icy)

e
P

1/2 1/2

-3¢,
— +
NER!

BC

2+JETA

To evaluate

1/2
2/\1/201/2 _ 2A

1/2 _

the first logarithmn,

Y
D cos >

LA

-B(1 -
TA

+

B - 5
Substitute this into the form

S 1/2.1/2
LOF:{‘[l + .?‘A‘_B.E__.

21%/2) sin =

] =

+ (j (- +

150 to get

hAl

/2

D cos

Y

o

loz(1l +

1p° .y
sin — ¢

B

where

hAl/2D cos %

-2 2

2 LA
. L4AD ) =

3

0s

1/2

L,

2

D cos

loe(l +

B

3/2.3 ¥
16A°" D" cos 5 g

B2

+

Second logarithm becomes

33

pel

Pl

Ko

3

A3/2D3 cos

B

3

3y

167

o
™
<o

170

171

172
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A {
2;.co 2Acl ' 2AC1 1 » Lu\co
Log[l - +—_—= - ] = = log(l = ——
32 B 2 B2
. 2 ZACl . 2«lACl _ )-lACO ‘2AC1)
B B2 B3
[}
. .,2./—“01 2ACO LACl 2AC1 2ACl 2ACl
+ il Tt ~% - ) 173
B B B
1 -hAcO 2 [eAcl hAc0 2Acl 3Acl,[2Acl
=3l =3 5t 3 - 3
B B B
. 2AC1 2ACO 2AC1 2ACl 2ACl 2AC1
il 5= 3 - ) 17k
B B 3
ow note that
wac-32 _ % ; . 175
< (2}
ga3/2  ppl/e anl/2 g3/
Substituting EZquations 163 , 169 , 171 , 174k , and 175 in the HEaua-
tion 165 yields
C C 3/2 1)2 sin 3 cos L
path{ . .2 . .1/2. _ 71 1 _ 2 2
[Ah"+Bh+C] ™" “dh = j +
two hAl/2 -J7 3 2AL1/2
- v ) 2 2y 3 v
) ClD cos > ) COD sin 2;]+ [? cos > ) D2 . D™ cos >
B B on 172 Wi L72 3
<,
13 coss L ¢ 5c.3/2 cDecosd D sind
2 (o] 1 (o] 2 1 2 6
- T3 - T T B ' 17
LA 8.’ 2B
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XIII, APPENDIX D
Friedman (12) has obtained, by a series of approximations znd a

single real integration, the relation

v, =k a +%-(ko a)1/3(313)2/3 e I7/3 177

The corresponding relation for B then becones

=J—§ (k, 2)'/3(3c )?/3 178

B S

s
This compares with the results of the nresent work if A is set

equal to zero before the integration is performed.

j[Bh+C]l/2dh - %E[Bh+c]3/2 179

Along path one, let

-C
h= =24+ jx 180
o]
so that
dh _
Pl 101
Then
path 1/2 © 1/2
[Bh+C]™'“dn = j [j2x=3C. 17" "ax
one c 1
1/8
(o]
_ 2 .y 3/2
= 5 [Jix JCl] .
1/3
2 .~ 13/2
= == [~ 2
35 [-9%] 18

Integration along the real axis gives the result
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¥§)

h+C)

Combining Equations

1/2dh -

2

3B

59

(632 - (250032

182 and 183 yields the eigenvalue equation

2327
3B k
In order that C3/2
2m
Vo= =
3
and
=C :E:_l.
o 2 °
Then
T _ 5
|| =—5cC .
From Equation 184
) 3518 2/3
o] = (=)
o
SO
5 3BT 2/3
¢, = — (=)
2k
5 o)

be real, one must require that

For the free space atmosphere,

B:g-
a

SO

,The final result is

183

184

185

187

190

191



B = —i-(koa)l/3(3TF)2/3 192
5 =

In comparing Equations 192 and 178 , it seems that Friedman's result
is equivalent to using a two term expansion for Y(k) in the height =ain
differential equation, instead of the three term expansion used in this
analysis. The solution for the heirht rain function in the case of a

linear function Y(h) can be obtained rigorously, without recourse to the
Lanper asymototic method, by making a change of variable to put the dif-

ferential equation into the form of Stokes eguation. The solution then

takes the form of the Airy integral, as discussed by Budden (7) and others.
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